

python-amazon-mws

python-amazon-mws is a Python connector to Amazon Marketplace Web Services [http://docs.developer.amazonservices.com/en_US/dev_guide/index.html]
(or MWS). It provides a simple way to build and send requests to MWS,
allowing access to all that MWS can do from your Python application.

Use Feeds to update your product listings, run Reports, get updates on your Orders,
create and manage FBA Inbound Shipments… do it all with python-amazon-mws!

Note

This is a third-party connector with no direct affiliation to Amazon.

	CHANGELOG

Introduction

	Prerequisites for MWS connectivity
	Test MWS access using Scratchpad

	Installation

	Getting started
	Entering credentials

	Making requests

Topics

	Generic Requests
	Back to basics

	Parameter dict flattening

	Generic request component methods

	Managing Fulfillment Inbound (FBA) Shipments
	Basic steps to create a shipment in MWS

	Requesting a shipment plan

	Processing shipment plans

	Creating shipments

	Updating shipments

	Using Parsed XML Responses
	How XML responses are parsed in python-amazon-mws

	Result keys and metadata

	XML “cleaning” before parsing

API sections

	Feeds

	InboundShipments

	Products

	Reports

Other references

	DotDict
	Keys as attributes

	Native iteration

	Recursive conversion of dict objects

	Working with XML tag attributes

	DotDict API

	MWSResponse
	Parsed content for XML responses

	Original response access

	MWSResponse API

CHANGELOG

v1.0dev16

Note

This is a prerelease version for v1.0.

	Date

	November 2020

	Issues

	See here [https://github.com/python-amazon-mws/python-amazon-mws/issues?q=milestone%3A1.0dev16+]

This update focused on the InboundShipments API, adding some new ways to input and manage data related to FBA shipments
while also introducing some comprehensive documentation of the same.

Also includes the Products API’s get_my_fees_estimate method, deprecation warnings for old argument names to smooth
the transition from v0.8.

Major changes

	Products API get_my_fees_estimate method added.

	See #216 [https://github.com/python-amazon-mws/python-amazon-mws/pull/216] for details.

	Deprecation warnings for old argument names.

	Some argument names for certain requests had changed between v0.8 and v1.0dev.
This change makes it possible to use the v0.8 argument names in current code.

	When using an old argument name, the method will raise a deprecation warning, indicating those old argument names
will be removed in v1.1. The method will then proceed as expected using the correct arg names.

	See #222 [https://github.com/python-amazon-mws/python-amazon-mws/pull/222] for details.

	Datatype models added for InboundShipments.

	All models for this API can be found in module mws.models.inbound_shipments.

	Added datatype models for Address,
PrepDetails <mws.InboundShipments.PrepDetails,
InboundShipmentPlanRequestItem <mws.InboundShipments.InboundShipmentPlanRequestItem, and
InboundShipmentItem <mws.InboundShipments.InboundShipmentItem.
These models can be used in relevant arguments for request methods related to FBA shipment creation and updating
(create_inbound_shipment_plan,
create_inbound_shipment, and
update_inbound_shipment.

	With this addition, it is now possible to include
PrepDetails for items being added to shipments.
This was not possible using the now-“legacy” item dictionary method (though it is still possible using the
lower-level generic requests).

	Added shipment_items_from_plan helper method.

	The method can process the contents of a shipment plan from the parsed response from
create_inbound_shipment_plan, turning the returned items into a set of InboundShipmentItem models
automatically.

	New documentation for Managing FBA Shipments added.

	See: Managing Fulfillment Inbound (FBA) Shipments.

	Comprehensive documentation for how to manage FBA shipments using the InboundShipments API.

	Showcases the usage of new models provided by this update.

Minor changes

	Links to Amazon MWS documentation throughout the code base updated from http:// to https://.

	Type annotations added to request methods for InboundShipments API.
- As part of this, certain assert-style checks for argument types have been removed.

	Tests for InboundShipments request methods overhauled, removing dependency on unittest in favor of pytest.

	URL naming improvements for documentation pages, and proper usage of doc links instead of adding extraneous anchor links.
- Some bookmarks may break with this change, apologies!

	Dev update callout removed from project README.

	Development tooling configurations moved into setup.cfg for consistency.

	Project test suite expanded to Python 3.9 and Ubuntu-20.04
- All automated testing is already performed in a matrix strategy, across Python 3.6, 3.7, 3.8, and 3.9; and on OSes Windows, MacOS, Ubuntu-18, and Ubuntu-20. Every combination of all these versions and OSes is tested.

v1.0dev15

Note

This is a prerelease version for v1.0.

	Date

	September 2020

This update represents a major step towards a v1.0 release candidate. Much of the core components of the project
have been restructured, new XML parsing logic has been added, and API code has been streamlined to ease development
efforts going forward.

Major changes

	Added dependency xmltodict for parsing XML documents to Python dict objects.

	Added MWSResponse, intended to replace DictWrapper and DataWrapper response wrappers; and
DotDict, intended to replace ObjectDict.

	These features are in preview mode. See 1 .

	Added MWS.generic_request(), a low-level interface for sending requests to any MWS operation
with any set of parameters necessary (using new utility function, mws.utils.params.flat_dict_param).

	Several objects have been moved, renamed, and/or retooled to improve code structuring and interoperability, most
notably mws.utils (which has been broken down to multiple modules with different concerns).

Code restructuring

Several objects have been moved and/or renamed, with new modules added to contain them. At the same time,
the namespace for most of those objects has been left mostly intact. Following changes relate to objects whose
imports may need to be adjusted in application code.

	mws.utils, formerly a single module file, is now a directory containing other modules with separated concerns.

	Moved mws.mws.DictWrapper to mws.utils.DictWrapper.

	Moved mws.mws.DataWrapper to mws.utils.DataWrapper.

	Moved mws.mws.ObjectDict to mws.utils.ObjectDict.

	Moved mws.mws.XML2Dict to mws.utils.XML2Dict.

	Moved/renamed mws.mws.clean_params to mws.utils.clean_params_dict.

	“Cleaning” logic has been broken down further with mws.utils.params.clean_value, which passes to other
“clean_FOO” methods such as clean_string, clean_bool, and clean_date.

	Changed mws.utils.get_utc_timestamp to mws.utils.mws_utc_now.

	get_utc_timestamp returned an ISO-8601-formatted string of the current datetime in UTC timezone.
mws_utc_now produces the same datetime, but instead returns a datetime.datetime object.
An ISO-8601 formatted string can easily be obtained using the .isoformat() method.

	Changed mws.mws.remove_namespace to mws.utils.remove_xml_namespaces.

	The new version works the same as the old, but can now accept bytes as well as strings.

Deprecations

The following have been deprecated:

	DictWrapper (removed in v1.1), replaced by MWSResponse in v1.0 (currently in preview mode).

	DataWrapper (removed in v1.1), replaced by MWSResponse in v1.0 (currently in preview mode).

	ObjectDict (removed in v1.1), replaced by DotDict in v1.0 (currently in preview mode).

	XML2Dict (removed in v1.1). XML parsing into Python objects will be performed by the xmltodict library
starting in v1.0.

	MWS.enumerate_param (removed in v1.0). Use utility methods found in mws.utils.params, instead.

Minor changes

	New arguments are available when instantiating an API class (subclasses of the MWS main class, such as
Feeds and Orders):

	Argument and class attr user_agent_str sets the User Agent String sent with requests to MWS. This can be used
to override PAM’s default agent string, "python-amazon-mws/{version} (Language=Python)".

	Argument headers and attribute extra_headers accepts a dictionary with headers to add to each request,
if necessary. Headers can still be altered per-request by passing an extra_headers kwarg to make_request
or generic_request.

	Argument and class attr force_response_encoding allows specifying the encoding used to decode a response’s
bytes content, when parsed by MWSResponse into a DotDict.

	Amazon documentation states they use ISO-8859-1 (aka Latin-1) encoding. However, some responses may still be
encoded differently, such as in UTF-8, even if this behaviour is not well-documented. By default,
python-amazon-mws relies on requests.Response.apparent_encoding to guess the character set to decode,
which should be sufficient for most uses.

	Setting force_response_encoding='utf-8', for example, will force responses to be decoded as UTF-8
automatically for any request made with that API class instance.

	Encoding can also be adjusted on the MWSResponse object, by assigning response.encoding = 'utf-8'
and then calling response.parse_response() to re-parse content.

	All request methods are now required to pass the Action name of an MWS operation as the first argument to
MWS.make_request or MWS.generic_request. Previously, this was expected as a parameter in the data sent with
a request.

	MWS.make_request argument extra_data has been renamed to params, and can now default to None.
This permits operations such as GetServiceStatus, which require no parameters, to pass without issue.

	The timeout kwarg in MWS.make_request has been promoted to a named argument, with a default value of
300 seconds.

Footnotes

	1

	1.0dev15 features preview: Prior to v1.0, DictWrapper and DataWrapper will still be used
as default response wrappers for all requests; and the .parsed interface for these objects will continue to be
ObjectDict instances.

To use MWSResponse and DotDict for response parsing in development versions (1.0dev15 and up),
you must enable the _use_feature_mwsresponse feature flag:

	Instantiate an API class, i.e. feeds_api = Feeds(...).

	Set flag _use_feature_mwsresponse to True on the class instance:
feeds_api._use_feature_mwsresponse = True.

Now all requests made through this class instance will return responses as MWSResponse.

Prerequisites for MWS connectivity

See also

All links in this documentation point to the developer.amazonservices.com
domain, but other regional domains are provided by Amazon. For a list of portals for other
regions, please see Related Resources (MWS documentation link) [http://docs.developer.amazonservices.com/en_US/dev_guide/DG_Resources.html].

In order to use python-amazon-mws, you must have an Amazon Professional Seller account,
and you must register as a developer [http://docs.developer.amazonservices.com/en_US/dev_guide/DG_Registering.html].
You will then be provided a set of MWS credentials, which include your
Seller ID, Access Key, and Secret Key (and, possibly, Auth Token).

These credentials, along with a Marketplace ID [http://docs.developer.amazonservices.com/en_US/dev_guide/DG_Endpoints.html],
will be needed to make requests to MWS, whether using python-amazon-mws or
any other MWS-related service.

Test MWS access using Scratchpad

You can test your access to MWS using Amazon MWS Scratchpad (docs [http://docs.developer.amazonservices.com/en_US/scratchpad/Scratchpad_Using.html]):

	Open the Scratchpad [https://mws.amazonservices.com/scratchpad/index.html].

Warning

Always verify the URL of the Scratchpad before entering your MWS credentials!
The domain should be mws.amazonservices.com or one of Amazon’s other regional domains
(see here [http://docs.developer.amazonservices.com/en_US/scratchpad/Scratchpad_Using.html]
for a list of regional portals).

	Enter your MWS credentials in the Authentication section.

	In API Section, choose “Products”.

	In Operation, choose “ListMatchingProducts”.

	Under Required API Parameters, enter:

	MarketplaceID: A valid MarketplaceID for your desired marketplace
(example: ATVPDKIKX0DER for the US market).
See: Amazon MWS endpoints and MarketplaceId values [http://docs.developer.amazonservices.com/en_US/dev_guide/DG_Endpoints.html].

	Query: python, to search for products containing “python” somewhere in their description.

	Click Submit.

If your access works, you should an XML response beginning with ListMatchingProductsResponse.
Otherwise, you may see an ErrorResponse, with an error message indicating the problem.

Installation

Currently, two versions of the package are available: an older v0.8.x,
available on PyPI [https://pypi.org/project/mws/]; and the in-development v1.0devXY,
available on GitHub [https://github.com/python-amazon-mws/python-amazon-mws].

For new projects, we recommend using v1.0devXY, as it contains a more complete set
of API sections and operations. Note that this version is still pre-alpha, so some parts
of the package are subject to change as we slowly update from the original 0.8.x code.

Use pip to install 1.0devXY from GitHub off the develop branch:

pip install git+https://github.com/python-amazon-mws/python-amazon-mws.git@develop#egg=mws

Getting started

Note

We assume you have an Amazon Professional Seller account and developer access
to be able to use MWS. If not, please see Prerequisites for MWS connectivity.

Entering credentials

To begin, use your MWS Credentials to instantiate one of the API classes.
We will use the Products API for this example.

Where you store these credentials is up to you, but we recommend using environment variables, like so:

import os
from mws import Products

products_api = Products(
 access_key=os.environ["MWS_ACCESS_KEY"],
 secret_key=os.environ["MWS_SECRET_KEY"],
 account_id=os.environ["MWS_ACCOUNT_ID"],
 auth_token=os.environ["MWS_AUTH_TOKEN"],
)
`auth_token` is optional, depending on how you your MWS access is set up.

Making requests

Each API class contains a number of request methods, which closely match the
Operations available to that API section in MWS. You should refer to MWS documentation
for the API class you intend to use and provide the data specified by that operation.

For our example, we will use the Products API [http://docs.developer.amazonservices.com/en_US/products/Products_Overview.html]
operation ListMatchingProducts [http://docs.developer.amazonservices.com/en_US/products/Products_ListMatchingProducts.html].
In python-amazon-mws, this is done using an instance of the Products API class and its method
list_matching_products:

from mws import Marketplaces

Marketplaces is an enum we can use to fill in the `marketplace_id` value,
instead of needing to manually enter, i.e., "ATVPDKIKX0DER"
my_marketplace = Marketplaces.US.marketplace_id

response = products_api.list_matching_products(
 marketplace_id=my_marketplace,
 query="python",
)

The request is sent automatically when list_matching_products is called, and a
response is returned. MWS typically returns an XML document encoded in ISO-8859-1
(per Amazon’s standards [http://docs.developer.amazonservices.com/en_US/dev_guide/DG_ISO8859.html]),
which python-amazon-mws attempts to decode automatically.

For most responses (including our example list_matching_products), the response will be a
DictWrapper object containing:

	response.original, the original XML document;

	response.response, the HTTP response code of the request (200, 400, etc.); and

	response.parsed, a parsed version of the XML tree. (See Using Parsed XML Responses).

Certain responses (such as the GetReport [http://docs.developer.amazonservices.com/en_US/reports/Reports_GetReport.html] operation, under
the Reports API) may return other content types, such as PDFs, tab-delimited flat files, ZIP files,
and so on. Non-XML responses will be wrapped in a DataWrapper object with similar attributes
as DictWrapper, with the raw document stored in .original, and .parsed simply returning
.original for convenience.

Warning

New in version 1.0dev15.

DictWrapper and DataWrapper are deprecated, and will be removed in v1.1. During development testing,
these objects will still be returned from requests by default, and parsed content will still use ObjectDict
instances (also deprecated).

To use newer features, such as the MWSResponse wrapper and
parsed XML using DotDict, set flag _use_feature_mwsresponse to
True on an API class instance before making any requests:

instantiate your class
products_api = Products(...)

set the new feature flag
products_api._use_feature_mwsresponse = True

run your requests as normal
response = products_api.list_matching_products(...)

For details on using these newer features, please see:

	Using Parsed XML Responses

	MWSResponse

	DotDict

MWSResponse and DotDict will become the default objects returned by requests in v1.0.

Generic Requests

New in version 1.0dev15: Generic request support added.

While most MWS operations are well-covered by python-amazon-mws with dedicated and purpose-built request methods,
Amazon may occasionally update MWS to include new parameters that we do not yet provide access to. Either that, or
you just want lower-level access to input your own request, without going through the rest of python-amazon-mws
to do so.

For these situations, you can use APIClass.generic_request(), available
in all API classes that inherit from the base MWS class.

Back to basics

To use .generic_request(), you must first instantiate the API class that contains the operation you want to send.
Using the correct API class is required, as the base URI used the build the request is different for each API section.
For instance, to use the ListOrders operation in the Orders API, you would create an
Orders instance.

With the class instantiated, specify the operation to call as the action arg to .generic_request();
then provide a dict of parameters for your request as params:

import datetime

from mws import Orders, Marketplaces

my_marketplace_ids = [
 Marketplaces.US.marketplace_id,
 Marketplaces.UK.marketplace_id,
]

orders_api = Orders(MY_ACCESS_KEY, MY_SECRET_KEY, MY_ACCOUNT_ID)

response = orders_api.generic_request(
 action="ListOrders",
 params={
 "MarketplaceId.Id": my_marketplace_ids,
 "CreatedAfter": datetime.datetime(2020, 8, 28),
 }
)

The above is equivalent to calling
Orders.list_orders with:

response = orders_api.list_orders(
 marketplace_ids=my_marketplace_ids,
 created_after=datetime.datetime(2020, 8, 28),
)

Key differences between a generic request and the “pythonic” version include:

	The action must be specified for each call, using the case-sensitive name of the MWS operation
(usually in CapCase with no underscores).

	params must include case-sensitive keys matching the parameters required for the MWS operation, according to
Amazon documentation.

	The params dict is flattened, such that nested lists and dicts in params are
keyed and enumerated into appropriate request parameter keys.

Parameter dict flattening

Generic requests make use of flat_param_dict() to convert nested
Mappings and Iterables into a “flat” set of key-value pairs.

Rules

	Nested mapping objects (dict, DotDict, etc.) are recursively flattened, joining the keys of the child
mapping to the parent key with ..

	Nested iterables (list, tuple, set, etc.) are enumerated with a 1-based index, with each index
joined to the parent key with ..

	All nested mappings and iterables are processed recursively, flattening other mappings and iterables along the way.

Example

value = {
 "a": 1,
 "b": "hello",
 "c": [
 "foo",
 "bar",
 {
 "spam": "ham",
 "eggs": [
 5,
 6,
 7,
],
 },
],
}

The above, when passed through flat_param_dict(), produces:

{
 "a": 1,
 "b": "hello",
 "c.1": "foo",
 "c.2": "bar",
 "c.3.spam": "ham",
 "c.3.eggs.1": 5,
 "c.3.eggs.2": 6,
 "c.3.eggs.3": 7,
}

	“a” and “b” keys point to non-dict, non-sequence values (not including strings),
so they return their original values.

	“c” contains an iterable (list), which is enumerated with a 1-based index.
Each index is concatenated to “c” with “.”, creating keys “c.1” and “c.2”.

	At “c.3”, another nested object was found. This is processed recursively,
and each key of the resulting dict is concatenated to the parent “c.3”
to create multiple keys in the final output.

	The same occurs for “c.3.eggs”, where an iterable is found and is enumerated.

	The final output should always be a flat dictionary with key-value pairs.

Using a prefix

flat_param_dict accepts a prefix argument, used mainly when flattening nested objects recursively.
When provided, all keys in the resulting output will begin with prefix + '.':

Using the same `value` as before:
flat_param_dict(value, prefix="example")

Produces:
{
 "example.a": 1,
 "example.b": "hello",
 "example.c.1": "foo",
 "example.c.2": "bar",
 "example.c.3.spam": "ham",
 "example.c.3.eggs.1": 5,
 "example.c.3.eggs.2": 6,
 "example.c.3.eggs.3": 7,
}

Generic request component methods

	
MWS.generic_request(action, params=None, method='POST', timeout=300, **kwargs)

	Builds a generic request with arbitrary parameter arguments.
This method should be called from an API subclass (Orders, Feeds, etc.),
else the uri attribute of the class instance must be set manually.

This method’s signature matches that of .make_request, as the two methods
are similar. However, params is expected to be either the default None
or a nested dictionary, that is then passed to
flat_param_dict().

	
mws.utils.params.flat_param_dict(value, prefix='')

	Returns a flattened params dictionary by collapsing nested dicts and
non-string iterables.

Any arbitrarily-nested dict or iterable will be expanded and flattened.

	Each key in a child dict will be concatenated to its parent key.

	Elements of a non-string iterable will be enumerated using a 1-based index,
with the index number concatenated to the parent key.

	In both cases, keys and sub-keys are joined by ..

If prefix is set, all keys in the resulting output will begin with
prefix + '.'.

	Parameters

	
	value (Union[str, collections.abc.Mapping, List]) –

	prefix (str) –

	Return type

	dict

Managing Fulfillment Inbound (FBA) Shipments

Warning

The following includes features added in v1.0dev16 related to Datatype models.
Models can be called from the API class that uses them. For example, to use the
Address model attached to the
InboundShipments API:

from mws import InboundShipments

from the class itself:
my_address = InboundShipments.Address(...)

or from an instance of the class:
inbound_shipments_api = InboundShipments(...)
my_address = inbound_shipments_api.Address(...)

Note

Examples in this document use MWSResponse preview features.

MWS handles Fulfillment Inbound Shipments, also known as FBA (for “Fulfillment By Amazon”)
through the Fulfillment Inbound Shipment API section [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_Overview.html].
Users should familiarize themselves with this section of the API in MWS documentation before getting started.

In python-amazon-mws, this API is covered by InboundShipments.

Basic steps to create a shipment in MWS

For a quick overview, MWS requires the following pattern to creating FBA shipments:

	Send a request to
create_inbound_shipment_plan
with all items you wish to ship, along with their quantities, conditions, prep details, and so on.

	MWS will respond with one or more shipment plans, indicating where to send each of your items. Multiple shipments
may be requested, and the same item may have its quantities split between these shipments. Each plan also returns
the FBA Shipment ID needed to create a shipment, as well as the ID and address of the Fulfillment Center that will
expect that shipment.

	For each shipment plan, send a
create_inbound_shipment
request with the items, quantities, and other details identified in the plan.

	Optionally, it is possible to use
update_inbound_shipment
to add planned items for a new shipment to an existing shipment under certain conditions.
Using this option improperly may violate the terms of your seller account, so use with caution!

We’ll look at each of these steps in detail below.

Warning

MWS does not provide a sandbox for testing functionality. If you use examples from this
guide for testing purposes, you will need to use live data to do it, and will be creating
real FBA shipments. Please use this guide at your own risk.

Some things to keep in mind when testing this functionality:

	Make note of any Shipment IDs for shipments you generate with these examples.

	Use custom shipment names to help identify test shipments, such as “TEST_IGNORE”,
so you can more easily find those shipments in Seller Central, if you lose track of them in testing.

	Inform other members of your organization that you are conducting tests, particularly if they use Seller Central
or other MWS-related tooling to check on shipment statuses.

	Leaving test shipments in WORKING or SHIPPED statuses may have an impact on your product inventory.
We advise changing these to CANCELLED when you complete your testing.

Requesting a shipment plan

We start by informing Amazon we have items we wish to ship, requesting a shipment plan through MWS.

You will need:

	MWS credentials to authenticate with MWS (not in scope for these docs).

	A valid ship-from address, presumably the address of the facility where you will be shipping items from.

	A list of Seller SKUs for items in your product catalog to add to new shipments.

Create the API instance

To begin, create an instance of InboundShipments as you would any other API class in python-amazon-mws.
You will then use this API class instance to initiate requests to MWS.

from mws import InboundShipments

assuming MWS credentials are stored in environment variables (your setup may vary):
inbound_api = InboundShipments(
 access_key=os.environ("MWS_ACCESS_KEY"),
 secret_key=os.environ("MWS_SECRET_KEY"),
 account_id=os.environ("MWS_ACCOUNT_ID"),
)

Create your ship-from address

Next, set up your ship-from address, which is required for the three core operations related to FBA shipments:
planning, creation, and updating.

The simplest way to store your ship-from address is to create an instance of the
Address model:

my_address = inbound_api.Address(
 name="My Warehouse",
 address_line_1="555 Selling Stuff Lane",
 address_line_2="Suite 404",
 city="New York",
 district_or_county="Brooklyn",
 state_or_province_code="NY",
 country_code="US",
 postal_code="11265",
)

This model closely follows the structure of MWS’s Datatype of the same name [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_Datatypes.html#Address].
You should refer to MWS documentation for this Datatype to ensure all necessary elements of your address are included.

Note

If you’re curious, you can use any model’s .to_params() method to return a dictionary containing the
request parameters of that model and their values.

my_address.to_params()
{'Name': 'My Warehouse', 'AddressLine1': '555 Selling Stuff Lane', 'AddressLine2': 'Suite 404', 'City': 'New York', 'DistrictOrCounty': 'Brooklyn', 'StateOrProvinceCode': 'NY', 'CountryCode': 'US', 'PostalCode': '11265'}

This method also accepts a prefix argument, which adds the prefix string plus '.' before each parameter key:

my_address.to_params("ShipFromAddress")
{'ShipFromAddress.Name': 'My Warehouse', 'ShipFromAddress.AddressLine1': '555 Selling Stuff Lane', 'ShipFromAddress.AddressLine2': 'Suite 404', 'ShipFromAddress.City': 'New York', 'ShipFromAddress.DistrictOrCounty': 'Brooklyn', 'ShipFromAddress.StateOrProvinceCode': 'NY', 'ShipFromAddress.CountryCode': 'US', 'ShipFromAddress.PostalCode': '11265'}

Using .to_params() in your own code is usually not necessary, as most request methods will convert the
model instance to parameters automatically.

Optional: Store your ship-from address on the API instance

If you plan to make several requests in a row related to the same ship-from address, you can store the address on
an instance of InboundShipments API as .from_address:

inbound_api.from_address = my_address

When using this option, you can omit passing from_address=my_address as an argument in the request examples below.
All relevant request methods (create_inbound_shipment_plan, create_inbound_shipment, and
update_inbound_shipment) will pass the stored from_address to these requests automatically.

In any case, supplying a from_address argument to one of these methods will be used as an override, regardless of
the address stored within the API instance.

Request a shipment plan

Amazon’s workflow for creating a shipment uses the following pattern:

	Create a shipment plan by sending a CreateInboundShipmentPlan request. This informs Amazon which items
you intend to ship and the total quantity for each, as well as any prep details, item conditions, and so on.

	MWS responds with one or more planned shipments for those items. They may request certain items are sent to
certain fulfillment centers, and may even split quantities for some items to multiple facilities. You must use
the planned shipments to create your actual shipments.

	Send a CreateInboundShipment request for each planned shipment. This should include the ShipmentId,
DestinationFulfillmentCenterId, and any items and quantities returned in the response from
CreateInboundShipmentPlan, so that the new shipment matches the planned one.

	A successful request to CreateInboundShipment will create an FBA Shipment, which you can further interact with
through MWS or on Seller Central.

We’ll start by creating the shipment plan, for which we need a list of items.

Building a list of planned items

Each item in your shipment plan can be represented by an instance of
InboundShipmentPlanRequestItem,
which closely follows the MWS Datatype of the same name [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_Datatypes.html#InboundShipmentPlanRequestItem]:

item1 = inbound_api.InboundShipmentPlanRequestItem('MY-SKU-1', 36)
item2 = inbound_api.InboundShipmentPlanRequestItem('MY-SKU-2', 12)

my_items = [item1, item2]

The only required arguments for the model are sku and quantity, which are sufficient for loose item
shipments of new items when prep details do not need to be specified.

Note

You can add more detail to an InboundShipmentPlanRequestItem instance, depending on your needs.
If you were sending, for example, an item that comes in case-packs of 12, in NewOEM condition, with a particular
ASIN, and requires Amazon to prep each item with Polybagging; you might create that item model like so:

my_condition = inbound_api.ItemCondition.NEW_OEM # or the string "NewOEM"
my_prep_details = inbound_api.PrepDetails(
 prep_instruction=PrepInstruction.POLYBAGGING, # or "Polybagging"
 prep_owner=PrepDetails.AMAZON # or "AMAZON"
)

detailed_item = inbound_api.InboundShipmentPlanRequestItem(
 sku='MY-OTHER-SKU',
 quantity=48,
 quantity_in_case=12,
 asin='B0123456789',
 condition=my_condition,
 prep_details_list=[my_prep_details],
)

Again for the curious, detailed_item.to_params() looks like so:

detailed_item.to_params()
{'SellerSKU': 'MY-OTHER-SKU', 'ASIN': 'B0123456789', 'Condition': 'NewOEM', 'Quantity': 48, 'QuantityInCase': 12, 'PrepDetailsList.member.1.PrepInstruction': 'Polybagging', 'PrepDetailsList.member.1.PrepOwner': 'AMAZON'}

Sending the request

Now that we have our items handy, it’s time to make our request for a shipment plan:

using `inbound_api`, `my_address` and `my_items` from previous examples
resp = inbound_api.create_inbound_shipment_plan(my_items, from_address=my_address)

Other arguments you can provide include:

	country_code or subdivision_code, the country or country subdivision you are planning to send a shipment to.
country_code defaults to "US"; subdivision_code (which refers to a subdivision of India specifically)
defaults to None.

	According to MWS documentation [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_CreateInboundShipmentPlan.html],
providing both options will return an error.

	label_preference, a preference for label preparation. Defaults to None, which MWS may interpret
as “SELLER_LABEL” internally.

And note that the from_address argument is optional if the address has been
stored on the API instance.

Processing shipment plans

If our request to create shipment plans was successful, MWS will respond with an XML document containing plan details.
python-amazon-mws will automatically parse this response, giving us access to the
Python representation of the response in resp.parsed.

For reference, we will use the following example XML response from create_inbound_shipment_plan. You can access
this document in your own response by checking resp.original.text:

<?xml version="1.0"?>
<CreateInboundShipmentPlanResponse
 xmlns="http://mws.amazonaws.com/FulfillmentInboundShipment/2010-10-01/">
 <CreateInboundShipmentPlanResult>
 <InboundShipmentPlans>
 <member>
 <DestinationFulfillmentCenterId>ABE2</DestinationFulfillmentCenterId>
 <LabelPrepType>SELLER_LABEL</LabelPrepType>
 <ShipToAddress>
 <City>Breinigsville</City>
 <CountryCode>US</CountryCode>
 <PostalCode>18031</PostalCode>
 <Name>Amazon.com</Name>
 <AddressLine1>705 Boulder Drive</AddressLine1>
 <StateOrProvinceCode>PA</StateOrProvinceCode>
 </ShipToAddress>
 <EstimatedBoxContentsFee>
 <TotalUnits>10</TotalUnits>
 <FeePerUnit>
 <CurrencyCode>USD</CurrencyCode>
 <Value>0.10</Value>
 </FeePerUnit>
 <TotalFee>
 <CurrencyCode>USD</CurrencyCode>
 <Value>10.0</Value>
 </TotalFee>
 </EstimatedBoxContentsFee>
 <Items>
 <member>
 <FulfillmentNetworkSKU>FNSKU00001</FulfillmentNetworkSKU>
 <Quantity>1</Quantity>
 <SellerSKU>SKU00001</SellerSKU>
 <PrepDetailsList>
 <PrepDetails>
 <PrepInstruction>Taping</PrepInstruction>
 <PrepOwner>AMAZON</PrepOwner>
 </PrepDetails>
 </PrepDetailsList>
 </member>
 <member>
 ...
 </member>
 </Items>
 <ShipmentId>FBA0000001</ShipmentId>
 </member>
 <member>
 ...
 </member>
 </InboundShipmentPlans>
 </CreateInboundShipmentPlanResult>
 <ResponseMetadata>
 <RequestId>babd156d-8b2f-40b1-a770-d117f9ccafef</RequestId>
 </ResponseMetadata>
</CreateInboundShipmentPlanResponse>

Gathering shipment details

To begin, we can access each shipment plan in the parsed response like so:

Using the `resp` object from our previous examples
for plan in resp.parsed.InboundShipmentPlans.member:
 ...

Each plan contains metadata required for creating a new shipment. These include:

	plan.ShipmentId, the FBA shipment ID Amazon generates for the new shipment plan.

	plan.DestinationFulfillmentCenterId, the short code for a Fulfillment Center planning to receive this shipment.

	plan.LabelPrepType, the label preparation type for this shipment.

In addition to these data points, you should consider gathering the following data as arguments for the
create_inbound_shipment request method:

	shipment_name (required), a human-readable name to help identify your shipment without relying on shipment IDs.

	shipment_status, the initial status of the shipment. Defaults to “WORKING”, indicating the shipment will remain
“open” so that items and quantities can still be changed before it is shipped.

The following constants can be used for this argument:

	InboundShipments.STATUS_WORKING

	InboundShipments.STATUS_SHIPPED

	InboundShipments.STATUS_CANCELLED

	InboundShipments.STATUS_CANCELED (alias for STATUS_CANCELLED)

	case_required, a boolean indicating that items in the shipment are either all case-packed (if True) or
all loose items (if False). Defaults to False.

	box_contents_source, a string indicating a source of box content data for packages within the shipment, or
None indicating no box contents source. Defaults to None.

The following constants can be used for this argument:

	InboundShipments.BOX_CONTENTS_FEED, indicating contents will be provided in a Feed of type
_POST_FBA_INBOUND_CARTON_CONTENTS_.

	InboundShipments.BOX_CONTENTS_2D_BARCODE, indicating contents will be provided using 2D barcodes present
on the cartons of the shipment.

We will illustrate how to use these data points later in this doc.

Converting plan items to shipment items

While the request to create_inbound_shipment_plan makes use of the
InboundShipmentPlanRequestItem model to
transmit item data, this model is not sufficient for passing data to create_inbound_shipment and
update_inbound_shipment requests, as they require slightly different parameters. We will need to use the
InboundShipmentItem model, instead.

We can pass data to this model in one of three ways:

	Manually processing item data from the response:

for plan in resp.parsed.InboundShipmentPlans.member:
 shipment_items = []
 for item in plan.Items.member:
 new_item = inbound_api.InboundShipmentItem(
 sku=item.SellerSKU,
 quantity=item.Quantity,
)
 shipment_items.append(new_item)

	Using InboundShipmentItem.from_plan_item
to construct an item automatically from each item in the response:

for plan in resp.parsed.InboundShipmentPlans.member:
 shipment_items = []
 for item in plan.Items.member:
 new_item = inbound_api.InboundShipmentItem.from_plan_item(item)
 shipment_items.append(new_item)

	Using helper method shipment_items_from_plan
to return a list of items from the entire plan automatically:

for plan in resp.parsed.InboundShipmentPlans.member:
 shipment_items = inbound_api.shipment_items_from_plan(plan)

Note

Using InboundShipmentItem.from_plan_item or shipment_items_from_plan, each item will automatically
store the fnsku of each planned item. This data is ignored in calls to create_inbound_shipment and
update_inbound_shipment, but can be useful for tracking items internally.

Using either of these methods, the list of shipment_items can be used as the items argument to either the
create_inbound_shipment or update_inbound_shipment request method.

Adding quantity_in_case and release_date values

Item data provided by a plan is sufficient for most data required for items, but some data points must be
added manually:

	Case-pack information, specifically the quantity_in_case argument, is not supplied by the response from
create_inbound_shipment_plan, even if this information was provided in the request itself.

	Pre-order items must provide an additional release_date data point.

In the first two examples above, these data points can be added as
arguments when constructing the new item:

using InboundShipmentItem(...):
new_item = inbound_api.InboundShipmentItem(
 sku=item.SellerSKU,
 quantity=item.Quantity,
 quantity_in_case=...,
 release_date=...,
)

using InboundShipmentItem.from_plan_item(...):
new_item = inbound_api.InboundShipmentItem.from_plan_item(
 item,
 quantity_in_case=...,
 release_date=...,
)

Confirm this data has been added:
print(new_item.quantity_in_case, new_item.release_date)

In either case, when working with multiple items per shipment plan, you will need to determine which SKU these data
refer to. You should be able to rely on item.SellerSKU to identify those SKUs.

Adding extra data when processing items in bulk

When processing a planned shipment’s items in bulk, adding quantity_in_case and/or release_date values to
each item can be done using the overrides argument to shipment_items_from_plan.

overrides expects a dictionary with SellerSKUs as its keys. The values of this dict can be either:

	A dict containing keys quantity_in_case and/or release_date (all other keys are ignored):

overrides = {
 'mySku1': {
 'quantity_in_case': 12,
 'release_date': datetime.datetime(2020-12-25),
 },
}

	An instance of ExtraItemData:

overrides = {
 'mySku2': inbound_api.ExtraItemData(
 quantity_in_case=12,
 release_date=datetime.datetime(2020-12-25),
),
}

You should construct this set of overrides for all SKUs sent in your original request to
create_inbound_shipment_plan. You can then use the same set of overrides on any planned shipment resulting
from that request:

overrides = {...}

for plan in resp.parsed.InboundShipmentPlans.member:
 shipment_items = inbound_api.shipment_items_from_plan(plan, overrides=overrides)

Creating shipments

Putting everything together up to this point, we can create a new FBA shipment using the
create_inbound_shipment
method:

with optional overrides
overrides = {
 'mySku1': inbound_api.ExtraItemData(...),
 'mySku2': inbound_api.ExtraItemData(...),
}

for plan in resp.parsed.InboundShipmentPlans.member:
 # Gather our items for the planned shipment
 shipment_items = inbound_api.shipment_items_from_plan(plan, overrides=overrides)

 # Send the request to create a new shipment
 new_shipment_resp = inbound_api.create_inbound_shipment(
 shipment_id=plan.ShipmentId,
 shipment_name="My Shiny New FBA Shipment",
 destination=plan.DestinationFulfillmentCenterId,
 items=shipment_items,
 label_preference=plan.LabelPrepType,
)

For help with additional arguments - such as shipment_status, case_required, box_contents_source,
or from_address - see Gathering shipment details.

Updating shipments

Creating a shipment is not the end of the story, of course. It is sometimes necessary to make changes to an
already-created shipment. For this, we use
update_inbound_shipment.

update_inbound_shipment’s arguments are identical to those of create_inbound_shipment, with the exception that
all arguments besides shipment_id are optional. Generally, supplying a value to one of those arguments will
overwrite that value of the given shipment, such as:

	Setting shipment_status=InboundShipments.STATUS_CANCELLED to cancel a shipment;

	Changing the from_address;

	etc.

Changing item quantities

Item quantities on a shipment can be changed by providing a list of InboundShipmentItem instances for the items
argument of update_inbound_shipment. The details of the submitted items will overwrite details of those items in the
existing shipment based on matching SellerSKUs.

Amazon will expect the total quantity for an item: there is no mechanism for adding or subtracting a quantity from
the existing total. For example, if a shipment contains 24 units of an item and you want to add 12 of that item,
you will need to submit a total quantity of 36 in the update request:

resp = inbound_api.update_inbound_shipment(
 shipment_id="FBAMYSHIPMENT",
 items=[
 inbound_api.InboundShipmentItem(
 sku="MySku1",
 quantity=36,
)
]
)

It is up to you how you keep track of these quantity changes in your process. One way might be to cache these details
in some local database. Another might be querying the current total quantity using a request to
list_inbound_shipment_items, then
calculating the new total:

my_shipment = "FBAMYSHIPMENT"
Set our change quantities as "deltas", with SKU as key and the change as value
quantity_deltas = {
 'mySku1': 12, # add 12
 'mySku2': -6, # remove 6
}

update_items = []

list_resp = inbound_api.list_inbound_shipment_items(shipment_id=my_shipment)
for item in list_resp.parsed.ItemData.member:
 if item.SellerSKU in quantity_deltas:
 new_quantity = item.QuantityShipped + quantity_deltas[item.SellerSKU]

 # Negative quantities not permitted, so set 0 as a minimum using `max`:
 new_quantity = max([new_quantity, 0])

 # Add items to a list for updates:
 update_items.append(
 inbound_api.InboundShipmentItem(item.SellerSKU, new_quantity)
)

if update_items:
 update_resp = inbound_api.update_inbound_shipment(
 shipment_id=my_shipment,
 items=update_items,
)

Adding items from a new shipment plan

Under certain conditions, items from a new shipment plan can be added to one of your existing shipments in WORKING
status. In this way, you can keep a shipment “open” in your own facility, adding new items to the same shipment before
“closing” it and sending it to Amazon’s fulfillment network.

Follow the same steps as Requesting a shipment plan, then inspect the contents of the planned shipments (see
Processing shipment plans).

Generally, you may be able to add newly-planned items to an existing shipment if the
following details match in the target “WORKING” shipment:

	DestinationFulfillmentCenterId

	LabelPrepType

	Whether both shipments are designated for hazmat items.

Note

In the author’s experience, this detail may not be apparent through MWS ahead of time: you may simply
need to attempt to add the item and handle whatever error occurs afterward.

Forgiveness instead of permission, as they say.

	Whether the two shipments require case packs or not.

This list is not exhaustive, so use best judgment and follow Amazon’s guidance where necessary.

If you determine that a planned item can be added to one of your existing shipments, add that item to an
update_inbound_shipment request for the given shipment ID.

As mentioned in Changing item quantities, remember to use the total quantity of an item being updated, not
the change in quantity, if the item is already present in the given shipment. If you are not tracking these quantities
in your own application, you may wish to send a request to
list_inbound_shipment_items to
obtain the current quantity of a matching item before sending the update request.

Using Parsed XML Responses

New in version 1.0dev15: MWSResponse and DotDict added.

Warning

The following pertains to features added in v1.0dev15 related to MWS requests.
These features are disabled by default. To use these features, set flag _use_feature_mwsresponse to True
on an API class instance before making any requests:

api_class = Orders(...)
api_class._use_feature_mwsresponse = True

If the flag is False, all requests will return either DictWrapper or DataWrapper objects (deprecated);
and parsed XML contents will be returned as an instance of ObjectDict (deprecated).

New features using MWSResponse and DotDict will become the default in v1.0.

For most MWS operations, the returned response is an XML documents encoded using ISO 8859-1 [http://docs.developer.amazonservices.com/en_US/dev_guide/DG_ISO8859.html]. python-amazon-mws will wrap all responses
in an instance of MWSResponse, which then parses these responses automatically
using the xmltodict package. This parsed content is then available from the
MWSResponse.parsed property.

Below, we’ll go into more detail on how to use MWSResponse.parsed in your application to get the most from
these XML responses.

How XML responses are parsed in python-amazon-mws

XML responses from MWS typically look like the following example (adapted from an example in MWS documentation):

<?xml version="1.0"?>
<ListMatchingProductsResponse xmlns="http://mws.amazonservices.com/schema/Products/2011-10-01">
 <ListMatchingProductsResult>
 <Products xmlns="http://mws.amazonservices.com/schema/Products/2011-10-01" xmlns:ns2="http://mws.amazonservices.com/schema/Products/2011-10-01/default.xsd">
 <Product>
 <Identifiers>
 <MarketplaceASIN>
 <MarketplaceId>ATVPDKIKX0DER</MarketplaceId>
 <ASIN>059035342X</ASIN>
 </MarketplaceASIN>
 </Identifiers>
 <AttributeSets>
 <ns2:ItemAttributes xml:lang="en-US">
 <ns2:Binding>Paperback</ns2:Binding>
 <ns2:Brand>Scholastic Press</ns2:Brand>
 <ns2:Creator Role="Illustrator">GrandPrÃ©, Mary</ns2:Creator>
 </ns2:ItemAttributes>
 </AttributeSets>
 <Relationships/>
 </Product>
 </Products>
 </ListMatchingProductsResult>
 <ResponseMetadata>
 <RequestId>3b805a12-689a-4367-ba86-EXAMPLE91c0b</RequestId>
 </ResponseMetadata>
</ListMatchingProductsResponse>

Parsing of this document goes through the following steps in python-amazon-mws:

	All requests are sent through the requests package, and responses are returned as
a requests.Response instance [https://2.python-requests.org/en/master/api/#requests.Response].

The Response object is then wrapped by MWSResponse, and stored internally
as MWSResponse.original.

	If the response did not specify an encoding in its headers, MWSResponse will call on
requests.Response.apparent_encoding explicitly to force character set detection.
For most use cases, this will allow the MWSResponse.text property
to decode the response content properly.

Note

if a different encoding is required, you can alter
MWSResponse.encoding before accessing
MWSResponse.text, or work with the raw MWSResponse.content.

You can also initialize an API class instance with a force_response_encoding='my-encoding' argument.
This will override the encoding used to decode all responses from that API’s requests. This is useful when you
are confident that responses are being encoded differently, such as when responses are actually encoded in UTF-8
(despite Amazon’s documentation to the contrary).

	MWSResponse.parse_response() is called, which:

	Produces a “clean” copy of the XML document to use for parsing (see XML “cleaning” before parsing).
(The original response content is left unchanged: only a copy is used for parsing.)

	Runs MWSResponse.text through the utility mws.utils.xml.mws_xml_to_dict. This uses xmltodict.parse()
to convert the XML to a standard Python dictionary, which is returned and stored as MWSResponse._dict.

	Wraps the parsed Python dict in a DotDict, which can be accessed from
MWSResponse.parsed.

If the response contains a <ResponseMetadata> tag, this method also builds a DotDict instance of this
key only, storing it as MWSResponse.metadata. Typically this tag
only contains the <RequestId> element, so the property
MWSResponse.request_id can also be used to access this value.

Once parsing is complete, the MWSResponse instance is returned. From this
instance, we can access the DotDict that is returned from its
.parsed property to comb through the returned data.

For more details on how to make the best use of this parsed data, please see
DotDict.

Result keys and metadata

Most MWS requests returning XML documents take the following overall shape:

<?xml version="1.0"?>
<OperationResponse>
 <OperationResult>
 ...
 </OperationResult>
 <ResponseMetadata>
 <RequestId>...</RequestId>
 </ResponseMetadata>
</OperationResponse>

The parsed document initially returns a dict with just two keys. For the above example, that would look like so:

{
 'OperationResult': ...,
 'ResponseMetadata': ...,
}

Note

Operation in all above examples would be replaced by the name of the MWS operation that was called.
For the ListInboundShipments operation, for example, the document’s root will be
ListInboundShipmentsResponse, and the result key will be ListInboundShipmentsResult.

Both the ...Result key and ResponseMetadata are accessible from
MWSResponse through separate properties:

	The ...Result key is used as the root for MWSResponse.parsed,
so accessing .parsed should only return parsed content found inside the <...Result> tag.

	ResponseMetadata is accessible from MWSResponse.metadata.
You can access the RequestId stored there either as MWSResponse.metadata.RequestId or through the shortcut
property, MWSResponse.request_id.

Tip

Amazon recommends [https://docs.developer.amazonservices.com/en_US/dev_guide/DG_ResponseFormat.html]
logging RequestId as well as the request timestamp (found in
MWSResponse.timestamp) to aid in troubleshooting when contacting
their support channels.

XML “cleaning” before parsing

MWS XML responses may be returned with a variety of data that does not fit well into Python data structures
During parsing of these responses, python-amazon-mws either removes or finesses some of this data into a “cleaner”
format.

Consider the example response from earlier:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	<?xml version="1.0"?>
<ListMatchingProductsResponse xmlns="http://mws.amazonservices.com/schema/Products/2011-10-01">
 <ListMatchingProductsResult>
 <Products xmlns="http://mws.amazonservices.com/schema/Products/2011-10-01" xmlns:ns2="http://mws.amazonservices.com/schema/Products/2011-10-01/default.xsd">
 <Product>
 <Identifiers>
 <MarketplaceASIN>
 <MarketplaceId>ATVPDKIKX0DER</MarketplaceId>
 <ASIN>059035342X</ASIN>
 </MarketplaceASIN>
 </Identifiers>
 <AttributeSets>
 <ns2:ItemAttributes xml:lang="en-US">
 <ns2:Binding>Paperback</ns2:Binding>
 <ns2:Brand>Scholastic Press</ns2:Brand>
 <ns2:Creator Role="Illustrator">GrandPrÃ©, Mary</ns2:Creator>
 </ns2:ItemAttributes>
 </AttributeSets>
 <Relationships/>
 </Product>
 </Products>
 </ListMatchingProductsResult>
 <ResponseMetadata>
 <RequestId>3b805a12-689a-4367-ba86-EXAMPLE91c0b</RequestId>
 </ResponseMetadata>
</ListMatchingProductsResponse>

This document will be “cleaned” as follows:

	The document’s root tag - in this case <ListMatchingProductsResponse> - will be ignored. The parsed Python dict
will take the shape of:

{
 'ListMatchingProductsResult': ...,
 'ResponseMetadata': ...
}

	Namespaces [https://en.wikipedia.org/wiki/XML_namespace] are removed. For instance, the <Products> tag
(line 4) will have both namespaces stripped, leaving only the bare tag name.

	Prefixes - such as ns2: or xml:, seen on lines 13 through 17 - are removed from tag names and attributes.
The tag <ns2:ItemAttributes xml:lang="en-US"> on line 13 will be stripped down to just
<ItemAttributes lang="en-US"> prior to being parsed.

Feeds

According to Amazon’s documentation [https://docs.developer.amazonservices.com/en_US/feeds/Feeds_Overview.html]:

The Amazon MWS Feeds API section of the Amazon Marketplace Web Service
(Amazon MWS) API lets you upload inventory and order data to Amazon.
You can also use the Amazon MWS Feeds API section to get information about
the processing of feeds.

More details on how to utilize the Feeds API per MWS requirements can be
found at the above link. Below we’ll provide details on how to use this API
with Feeds.

Uploading metadata for VAT invoices

Metadata for VAT invoices is processed as a FeedOptions parameter to the SubmitFeed operation, as described in
Amazon’s documentation, Invoice Uploader Developer Guide (PDF) [https://m.media-amazon.com/images/G/03/B2B/invoice-uploader-developer-documentation.pdf]
This parameter is not described in the standard MWS developer documentation, unfortunately, which can lead to some
confusion.

When submitting a feed, you can either build the metadata string yourself following the above guidelines,
or provide a dict to the feed_options arg for Feeds.submit_feed:

from mws import Feeds, Marketplaces

feeds_api = Feeds(MY_ACCESS_KEY, MY_SECRET_KEY, MY_ACCOUNT_ID)

feed_opts = {'orderid': '407-XXXXXX-6760332', 'invoicenumber': 51}

response = feeds_api.submit_feed(
 feed=my_invoice_file.encode(),
 feed_type='_UPLOAD_VAT_INVOICE_',
 feed_options=feed_opts,
 marketplace_ids=Marketplaces.UK.marketplace_id,
)

The above will automatically convert feed_opts into the formatted string
'metadata:orderid=407-XXXXXX-6760332;metadata:invoicenumber=51' when the request is sent.
You can also send this same string as feed_options, if you wish to perform your own formatting:

response = feeds_api.submit_feed(
 feed=my_invoice_file.encode(),
 feed_type='_UPLOAD_VAT_INVOICE_',
 feed_options='metadata:orderid=407-XXXXXX-6760332;metadata:invoicenumber=51',
 marketplace_ids=Marketplaces.UK.marketplace_id,
)

Note

The format for the FeedOptions string is described in Amazon’s documentation
here [https://m.media-amazon.com/images/G/03/B2B/invoice-uploader-developer-documentation.pdf] (PDF).
You are welcome to format your own FeedOptions string, if you find that the python-amazon-mws implementation
is not suitable for your specific needs.

You can find our implementation for this formatting within the source for Feeds.

Feeds API reference

	
class mws.Feeds(access_key, secret_key, account_id, region='US', uri='', version='', auth_token='', proxy=None, user_agent_str='', headers=None, force_response_encoding=None)

	Amazon MWS Feeds API.

Docs:
https://docs.developer.amazonservices.com/en_US/feeds/Feeds_Overview.html

	
submit_feed(feed, feed_type, feed_options=None, marketplace_ids=None, amazon_order_id=None, document_type=None, content_type='text/xml', purge=False)

	The SubmitFeed operation. [https://docs.developer.amazonservices.com/en_US/feeds/Feeds_SubmitFeed.html]
Uploads a feed for processing by Amazon MWS.

Requires feed, a file in XML or flat-file format encoded to bytes; and
feed_type, a string detailing a FeedType enumeration [https://docs.developer.amazonservices.com/en_US/feeds/Feeds_FeedType.html].

All other parameters may change depending on the feed_type you select.
See Amazon docs for details.

feed_options is used for feed_type “_UPLOAD_VAT_INVOICE_”, to provide
FeedOption metadata. See Invoice Uploader Developer Guide (PDF) [https://m.media-amazon.com/images/G/03/B2B/invoice-uploader-developer-documentation.pdf],
for details. Can accept a dict of simple key-value pairs, which will be
converted to the proper string format automatically.

marketplace_ids accepts a list of one or more marketplace IDs where you
want the feed to be applied. Can also accept a single marketplace ID as a
string.

amazon_order_id and document_type are used for feed_type
“_POST_EASYSHIP_DOCUMENTS_”, used for Amazon Easy Ship orders
(available only in India marketplace). Provide an Amazon Order ID as a string
and the type of PDF document (“ShippingLabel”, “Invoice”, or “Warranty”; or
None to get all).

content_type sets the “Content-Type” request header, indicating the type
of file being sent. Defaults to "text/xml".

purge enables Amazon’s “purge and replace” functionality. Set to True
to purge and replace existing data, otherwise use False (the default).
Only applies to product-related flat file feed types.
Use only in exceptional cases.
Usage is throttled to allow only one purge and replace within a 24-hour period.

	
get_feed_submission_list(feed_ids=None, max_count=None, feed_types=None, processing_statuses=None, from_date=None, to_date=None, next_token=None)

	Returns a list of all feed submissions submitted
between from_date and to_date. If these params are omitted,
defaults to the previous 90 days.

Pass next_token to call “GetFeedSubmissionListByNextToken” instead.

Docs:
https://docs.developer.amazonservices.com/en_US/feeds/Feeds_GetFeedSubmissionList.html

	
get_feed_submission_list_by_next_token(token)

	Alias for get_feed_submission_list(next_token=token).

Docs:
https://docs.developer.amazonservices.com/en_US/feeds/Feeds_GetFeedSubmissionListByNextToken.html

	
get_feed_submission_count(feed_types=None, processing_statuses=None, from_date=None, to_date=None)

	Returns a count of the feeds submitted between from_date and to_date.
If these params are omitted, defaults to the previous 90 days.

Docs:
https://docs.developer.amazonservices.com/en_US/feeds/Feeds_GetFeedSubmissionCount.html

	
cancel_feed_submissions(feed_ids=None, feed_types=None, from_date=None, to_date=None)

	Cancels one or more feed submissions and returns a count of the
feed submissions that were canceled.

Docs:
https://docs.developer.amazonservices.com/en_US/feeds/Feeds_CancelFeedSubmissions.html

	
get_feed_submission_result(feed_id)

	Returns the feed processing report and the Content-MD5 header.

Docs:
https://docs.developer.amazonservices.com/en_US/feeds/Feeds_GetFeedSubmissionResult.html

	
class FeedProcessingStatus(value)

	Enumerates all the feed processing status values that are available
through the Feeds API section.

MWS Docs: FeedProcessingStatus enumeration [https://docs.developer.amazonservices.com/en_US/feeds/Feeds_FeedProcessingStatus.html]

	
class FeedType(value)

	Enumerates all the feed types that are available through the Feeds API section.

MWS Docs: FeedType enumeration [https://docs.developer.amazonservices.com/en_US/feeds/Feeds_FeedType.html]

Please refer to MWS documentation for details on each FeedType, including usage,
template files, and additional information links.

InboundShipments

According to Amazon’s documentation [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_Overview.html]:

With the Fulfillment Inbound Shipment API section of Amazon Marketplace Web
Service (Amazon MWS), you can create and update inbound shipments of inventory
in Amazon’s fulfillment network. You can also request lists of inbound
shipments or inbound shipment items based on criteria that you specify.
After your inventory has been received in the fulfillment network, Amazon
can fulfill your orders regardless of whether you are selling on Amazon’s
retail web site or through other retail channels.

InboundShipments API reference

	
class mws.InboundShipments(*args, **kwargs)

	Amazon MWS FulfillmentInboundShipment API

MWS docs: FulfillmentInboundShipment Overview [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_Overview.html]

	
set_ship_from_address(address)

	DEPRECATED, remove later.
Now an alias to assigning from_address property directly.

	Parameters

	address (Union[mws.models.inbound_shipments.Address, dict]) –

	
from_address_params(from_address=None, prefix='')

	Converts a from address, either stored or passed as an argument, to params.

If provided as an argument, checks first that the arg is the correct type,
raising TypeError if it’s not an instance of the Address model.

Providing a from_address as an argument will override any address stored
on this API instance.

	Parameters

	
	from_address (Optional[mws.models.inbound_shipments.Address]) –

	prefix (str) –

	Return type

	dict

	
get_inbound_guidance_for_sku(skus, marketplace_id)

	Returns inbound guidance for a list of items by Seller SKU.

skus expects some iterable of strings. If it is any other type of object,
it will be treated as a single instance and wrapped in a list first,
similar to passing [skus].

MWS docs: GetInboundGuidanceForSKU [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_GetInboundGuidanceForSKU.html]

	Parameters

	
	skus (Union[List[str], str]) –

	marketplace_id (str) –

	
get_inbound_guidance_for_asin(asins, marketplace_id)

	Returns inbound guidance for a list of items by ASIN.

asins expects some iterable of strings. If it is any other type of object,
it will be treated as a single instance and wrapped in a list first,
similar to passing [asins].

MWS docs: GetInboundGuidanceForASIN [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_GetInboundGuidanceForASIN.html]

	Parameters

	
	asins (Union[List[str], str]) –

	marketplace_id (str) –

	
create_inbound_shipment_plan(items, country_code='US', subdivision_code=None, label_preference=None, from_address=None)

	Returns one or more inbound shipment plans, which provide the
information you need to create inbound shipments.

items expects a list of InboundShipmentPlanRequestItem model instances.
Also supports a list of “legacy” dictionaries, in which the keys ‘sku’ and
‘quantity’ are required; and keys ‘asin’, ‘condition’, and ‘quantity_in_case’
are optional.

	Note that the dictionary format does not support adding
PrepDetails, as the InboundShipmentPlanRequestItem model does.

If from_address is not provided (with an instance of the Address model),
then the .from_address attribute of this class instance must be set
before using this operation.

MWS docs: CreateInboundShipmentPlan [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_CreateInboundShipmentPlan.html]

	Parameters

	
	items (List[Union[mws.models.inbound_shipments.InboundShipmentPlanRequestItem, dict]]) –

	country_code (str) –

	subdivision_code (Optional[str]) –

	label_preference (Optional[str]) –

	from_address (Optional[mws.models.inbound_shipments.Address]) –

	
create_inbound_shipment(shipment_id, shipment_name, destination, items, shipment_status='WORKING', label_preference=None, case_required=False, box_contents_source=None, from_address=None)

	Creates an inbound shipment to Amazon’s fulfillment network.

items expects a list of InboundShipmentItem model instances.
Also supports a list of “legacy” dictionaries, in which the keys ‘sku’ and
‘quantity’ are required; and key ‘quantity_in_case’ is optional.

	Note that the dictionary format does not support adding
PrepDetails, as the InboundShipmentItem model does.

	The model also supports adding release_date, which the dictionary
does not.

If from_address is not provided (with an instance of the Address model),
then the .from_address attribute of this class instance must be set
before using this operation.

MWS docs: CreateInboundShipment [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_CreateInboundShipment.html]

	Parameters

	
	shipment_id (str) –

	shipment_name (str) –

	destination (str) –

	items (List[Union[mws.models.inbound_shipments.InboundShipmentItem, dict]]) –

	shipment_status (str) –

	label_preference (Optional[str]) –

	case_required (bool) –

	box_contents_source (Optional[str]) –

	from_address (Optional[mws.models.inbound_shipments.Address]) –

	
update_inbound_shipment(shipment_id, shipment_name=None, destination=None, items=None, shipment_status=None, label_preference=None, case_required=None, box_contents_source=None, from_address=None)

	Updates an existing inbound shipment in Amazon FBA.

items expects a list of InboundShipmentItem model instances.
Also supports a list of “legacy” dictionaries, in which the keys ‘sku’ and
‘quantity’ are required; and key ‘quantity_in_case’ is optional.

	Note that the dictionary format does not support adding
PrepDetails, as the InboundShipmentItem model does.

	The model also supports adding release_date, which the dictionary
does not.

If from_address is not provided (with an instance of the Address model),
then the .from_address attribute of this class instance must be set
before using this operation.

MWS docs: UpdateInboundShipment [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_UpdateInboundShipment.html]

	Parameters

	
	shipment_id (str) –

	shipment_name (Optional[str]) –

	destination (Optional[str]) –

	items (Optional[List[Union[mws.models.inbound_shipments.InboundShipmentItem, dict]]]) –

	shipment_status (Optional[str]) –

	label_preference (Optional[str]) –

	case_required (Optional[bool]) –

	box_contents_source (Optional[str]) –

	from_address (Optional[mws.models.inbound_shipments.Address]) –

	
get_preorder_info(shipment_id)

	Returns pre-order information, including dates, that a seller needs
before confirming a shipment for pre-order. Also indicates if a shipment has
already been confirmed for pre-order.

MWS docs: GetPreorderInfo [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_GetPreorderInfo.html]

	Parameters

	shipment_id (str) –

	
confirm_preorder(shipment_id, need_by_date)

	Confirms a shipment for pre-order.

MWS docs: ConfirmPreorder [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_ConfirmPreorder.html]

	Parameters

	
	shipment_id (str) –

	need_by_date (datetime.datetime) –

	
get_prep_instructions_for_sku(skus, country_code='US')

	Returns labeling requirements and item preparation instructions
to help you prepare items for an inbound shipment.

MWS docs: GetPrepInstructionsForSKU [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_GetPrepInstructionsForSKU.html]

	Parameters

	
	skus (Union[List[str], str]) –

	country_code (str) –

	
get_prep_instructions_for_asin(asins, country_code='US')

	Returns item preparation instructions to help with item sourcing decisions.

MWS docs: GetPrepInstructionsForASIN [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_GetPrepInstructionsForASIN.html]

	Parameters

	
	asins (Union[List[str], str]) –

	country_code (str) –

	
estimate_transport_request(shipment_id)

	Requests an estimate of the shipping cost for an inbound shipment.

MWS docs: EstimateTransportRequest [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_EstimateTransportRequest.html]

	Parameters

	shipment_id (str) –

	
get_transport_content(shipment_id)

	Returns current transportation information about an inbound shipment.

MWS docs: GetTransportContent [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_GetTransportContent.html]

	Parameters

	shipment_id (str) –

	
confirm_transport_request(shipment_id)

	Confirms that you accept the Amazon-partnered shipping estimate and
you request that the Amazon-partnered carrier ship your inbound shipment.

MWS docs: ConfirmTransportRequest [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_ConfirmTransportRequest.html]

	Parameters

	shipment_id (str) –

	
void_transport_request(shipment_id)

	Voids a previously-confirmed request to ship your inbound shipment
using an Amazon-partnered carrier.

MWS docs: VoidTransportRequest [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_VoidTransportRequest.html]

	Parameters

	shipment_id (str) –

	
get_package_labels(shipment_id, num_labels, page_type=None)

	Returns PDF document data for printing package labels for an inbound shipment.

MWS docs: GetPackageLabels [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_GetPackageLabels.html]

	Parameters

	
	shipment_id (str) –

	num_labels (int) –

	page_type (str) –

	
get_unique_package_labels(shipment_id, page_type, package_ids)

	Returns unique package labels for faster and more accurate shipment
processing at the Amazon fulfillment center.

shipment_id must match a valid, current shipment.

page_type expected to be string matching one of following
(not checked, in case Amazon requirements change):

	“PackageLabel_Letter_2”

	“PackageLabel_Letter_6”

	“PackageLabel_A4_2”

	“PackageLabel_A4_4”

	“PackageLabel_Plain_Paper”

package_ids expects some iterable of strings or integers.
If it is any other type of object, it will be treated as a single instance and
wrapped in a list first, similar to passing [package_ids].

MWS docs: GetUniquePackageLabels [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_GetUniquePackageLabels.html]

	Parameters

	
	shipment_id (str) –

	page_type (str) –

	package_ids (Union[Iterable[Union[str, int]], str, int]) –

	
get_pallet_labels(shipment_id, page_type, num_labels)

	Returns num_labels number of pallet labels for shipment shipment_id
of the given page_type.

Amazon expects page_type as a string matching one of following:

	“PackageLabel_Letter_2”

	“PackageLabel_Letter_6”

	“PackageLabel_A4_2”

	“PackageLabel_A4_4”

	“PackageLabel_Plain_Paper”

num_labels is integer, number of labels to create.

MWS docs: GetPalletLabels [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_GetPalletLabels.html]

	Parameters

	
	shipment_id (str) –

	page_type (str) –

	num_labels (int) –

	
get_bill_of_lading(shipment_id)

	Returns PDF document data for printing a bill of lading for an
inbound shipment.

MWS docs: GetBillOfLading [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_GetBillOfLading.html]

	Parameters

	shipment_id (str) –

	
list_inbound_shipments(shipment_ids=None, shipment_statuses=None, last_updated_after=None, last_updated_before=None, next_token=None)

	Returns list of shipments based on statuses, IDs, and/or before/after datetimes.

Pass next_token to call “ListInboundShipmentsByNextToken” instead.

MWS docs: ListInboundShipments [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_ListInboundShipments.html]

	Parameters

	
	shipment_ids (Iterable[str]) –

	shipment_statuses (Iterable[str]) –

	last_updated_after (datetime.datetime) –

	last_updated_before (datetime.datetime) –

	next_token (str) –

	
list_inbound_shipments_by_next_token(token)

	Alias for list_inbound_shipments(next_token=token)

MWS docs: ListInboundShipmentsByNextToken [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_ListInboundShipmentsByNextToken.html]

	Parameters

	token (str) –

	
list_inbound_shipment_items(shipment_id=None, last_updated_after=None, last_updated_before=None, next_token=None)

	Returns list of items within inbound shipments and/or before/after datetimes.

Pass next_token to call “ListInboundShipmentItemsByNextToken” instead.

MWS docs: ListInboundShipmentItems [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_ListInboundShipmentItems.html]

	Parameters

	
	shipment_id (str) –

	last_updated_after (datetime.datetime) –

	last_updated_before (datetime.datetime) –

	next_token (str) –

	
list_inbound_shipment_items_by_next_token(token)

	Alias for list_inbound_shipment_items(next_token=token)

MWS docs: ListInboundShipmentItemsByNextToken [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_ListInboundShipmentItemsByNextToken.html]

	Parameters

	token (str) –

Other tools

Note

The following classes and utility functions are attached to the
InboundShipments class for convenient access. For example,
the Address model can be accessed like so:

from mws import InboundShipments

my_address = InboundShipments.Address(...)

or from an instance of InboundShipments:

inbound_api = InboundShipments(...)
my_address = inbound_api.Address(...)

Data models

	
class mws.models.inbound_shipments.Address(name=None, address_line_1=None, address_line_2=None, city=None, district_or_county=None, state_or_province_code=None, country_code='US', postal_code=None)

	Postal address information.

MWS docs: Address Datatype [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_Datatypes.html#Address]

	
classmethod from_legacy_dict(value)

	Create an Address from a legacy structured dict.

	Parameters

	value (dict) –

	Return type

	mws.models.inbound_shipments.Address

	
to_params(prefix='')

	Flattens all parameters and values of this model into a single key-value
dictionary, suitable for use in a request to MWS.

	Parameters

	prefix (str) –

	Return type

	dict

	
class mws.models.inbound_shipments.PrepDetails(prep_instruction, prep_owner='SELLER')

	A preparation instruction, and who is responsible for that preparation.

MWS docs: PrepDetails Datatype [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_Datatypes.html#PrepDetails]

prep_instruction accepts either a string or an instance of the PrepInstruction enum, detailing the type of prep
to perform.

prep_owner (optional) accepts a string, typically “AMAZON” or “SELLER”, to
indicate who is responsible for the prep. You can use PrepDetails.AMAZON
or PrepDetails.SELLER to fill in these values. Defaults to “SELLER”.

	
to_params(prefix='')

	Flattens all parameters and values of this model into a single key-value
dictionary, suitable for use in a request to MWS.

	Parameters

	prefix (str) –

	Return type

	dict

	
class mws.models.inbound_shipments.InboundShipmentPlanRequestItem(*args, asin=None, condition=None, **kwargs)

	Item information for creating an inbound shipment plan.
Submitted with a call to the CreateInboundShipmentPlan operation.

MWS docs: InboundShipmentPlanRequestItem Datatype [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_Datatypes.html#InboundShipmentPlanRequestItem]

Adds the optional arguments asin (to include ASIN as needed) and condition
(to add item condition information).

condition may be a string or an instance of ItemCondition.

	
to_params(prefix='')

	Flattens all parameters and values of this model into a single key-value
dictionary, suitable for use in a request to MWS.

	Parameters

	prefix (str) –

	Return type

	dict

	
class mws.models.inbound_shipments.InboundShipmentItem(*args, release_date=None, **kwargs)

	Item information for an inbound shipment.
Submitted with a call to the CreateInboundShipment or
UpdateInboundShipment operation.

MWS docs: InboundShipmentItem Datatype [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_Datatypes.html#InboundShipmentItem]

	
classmethod from_plan_item(item, quantity_in_case=None, release_date=None)

	Construct this model from a shipment plan returned from a
CreateInboundShipmentPlan request.

Expects a DotDict instance that can typically be found in the parsed
response object by:

	Iterating for plan in resp.parsed.InboundShipmentPlans.member:; and

	Iterating for item in plan.Items.member:.

Each item instance in the above example should work here [YMMV].

quantity_in_case must be passed manually for case-packed shipments,
even when constructing from a shipment plan response, as this data is not
typically returned in the plan details.

release_date is also not part of a shipment plan response, so this
must be passed manually in order to add it to the item.

	Parameters

	
	item (mws.utils.collections.DotDict) –

	quantity_in_case (Optional[int]) –

	release_date (Optional[datetime.datetime]) –

	Return type

	mws.models.inbound_shipments.InboundShipmentItem

	
to_params(prefix='')

	Flattens all parameters and values of this model into a single key-value
dictionary, suitable for use in a request to MWS.

	Parameters

	prefix (str) –

	Return type

	dict

Enums

	
class mws.models.inbound_shipments.PrepInstruction(value)

	Bases: enum.Enum

Enumeration of preparation instruction types.

MWS docs: PrepInstruction Datatype [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_Datatypes.html#PrepInstruction]

	
POLYBAGGING = 'Polybagging'

	

	
BUBBLEWRAPPING = 'BubbleWrapping'

	

	
TAPING = 'Taping'

	

	
BLACKSHRINKWRAPPING = 'BlackShrinkWrapping'

	

	
LABELING = 'Labeling'

	

	
HANGGARMENT = 'HangGarment'

	

	
class mws.models.inbound_shipments.ItemCondition(value)

	Bases: str, enum.Enum

Condition value for an item included with a CreateInboundShipmentPlan request.
Values are defined within the InboundShipmentPlanRequestItem Datatype documentation [https://docs.developer.amazonservices.com/en_US/fba_inbound/FBAInbound_Datatypes.html#InboundShipmentPlanRequestItem].

	
NEW_ITEM = 'NewItem'

	

	
NEW_WITH_WARRANTY = 'NewWithWarranty'

	

	
NEW_OEM = 'NewOEM'

	

	
NEW_OPEN_BOX = 'NewOpenBox'

	

	
USED_LIKE_NEW = 'UsedLikeNew'

	

	
USED_VERY_GOOD = 'UsedVeryGood'

	

	
USED_GOOD = 'UsedGood'

	

	
USED_ACCEPTABLE = 'UsedAcceptable'

	

	
USED_POOR = 'UsedPoor'

	

	
USED_REFURBISHED = 'UsedRefurbished'

	

	
COLLECTIBLE_LIKE_NEW = 'CollectibleLikeNew'

	

	
COLLECTIBLE_VERY_GOOD = 'CollectibleVeryGood'

	

	
COLLECTIBLE_GOOD = 'CollectibleGood'

	

	
COLLECTIBLE_ACCEPTABLE = 'CollectibleAcceptable'

	

	
COLLECTIBLE_POOR = 'CollectiblePoor'

	

	
REFURBISHED_WITH_WARRANTY = 'RefurbishedWithWarranty'

	

	
REFURBISHED = 'Refurbished'

	

	
CLUB = 'Club'

	

Utilities

	
mws.models.inbound_shipments.shipment_items_from_plan(plan, overrides=None)

	Given a shipment plan response, returns a list of
InboundShipmentItem models
constructed from the contents of that plan’s Items set.

Expects plan to be a node from a parsed MWS response from the
create_inbound_shipment_plan request, typically the
resp.parsed.InboundShipmentPlans.member node (which may be a
DotDict for a single plan or a list of DotDict
instances for multiple; though both options should be natively iterable with the
same interface).

Providing overrides allows the addition of details that are not returned by
create_inbound_shipment_plan, such as quantity_in_case and release_date.
Expects a dict where SellerSKUs are keys and the values are either instances of
ExtraItemData or dictionaries with the keys quantity_in_case and/or
release_date. Only items matching a SellerSKU key in overrides will have
data overridden this way.

For example usage, see: Converting plan items to shipment items

	Parameters

	
	plan (Union[mws.utils.collections.DotDict, List[mws.utils.collections.DotDict]]) –

	overrides (Optional[Dict[str, mws.models.inbound_shipments.ExtraItemData]]) –

	Return type

	List[mws.models.inbound_shipments.InboundShipmentItem]

	
class mws.models.inbound_shipments.ExtraItemData(quantity_in_case=None, release_date=None)

	Dataclass used for providing overrides to individual SKUs when
processing items from a planned shipment in bulk using
shipment_items_from_plan().

To utilize this data, construct a dictionary that maps SellerSKUs to instances of
this class, then pass that dictionary to the overrides argument for
shipment_items_from_plan.

Example:

override_data = {
 # with a case quantity
 "MySku1": ExtraItemData(quantity_in_case=12),
 # a release date
 "MySku2": ExtraItemData(release_date=datetime.datetime(2021, 1, 28)),
 # or both (short version)
 "MySku3": ExtraItemData(24, datetime.datetime(2021, 1, 28)),
}

data = shipment_items_from_plan(plan, override_data)

Products

According to Amazon’s documentation [https://docs.developer.amazonservices.com/en_US/products/Products_Overview.html]:

The Products API section of Amazon Marketplace Web Service (Amazon MWS) helps you get information to match your
products to existing product listings on Amazon Marketplace websites and to make sourcing and pricing decisions for
listing those products on Amazon Marketplace websites. The Amazon MWS Products API returns product attributes,
current Marketplace pricing information, and a variety of other product and listing information.

Using examples on this page

All examples below assume you have setup your Products API instance appropriately. Refer to Getting started
for details:

from mws import Products

products_api = Products(
 access_key="...",
 secret_key="...",
 account_id="...",
 auth_token="...",
)

All request methods in the Products API also require a MarketplaceId to specify which marketplace the products
are sold in. MarketplaceId values should match one of the values specified in Amazon documentation:
Amazon MWS endpoints and MarkeplaceId values [https://docs.developer.amazonservices.com/en_US/dev_guide/DG_Endpoints.html]

python-amazon-mws makes these values available through the Marketplaces Enum, which
contains both the endpoint and marketplace_id for each Amazon region via that region’s country code.

For convenience, a Marketplaces instance will return its MarketplaceId through the .value attribute, as well.
Further, all request methods in python-amazon-mws will automatically “clean” Enum instances by returning their .value
attributes.

The following are all valid methods for obtaining, for example, the MarketplaceId for the US region and passing it
to a request method in the Products API:

from mws import Marketplaces

my_market = Marketplaces.US
Returns the Enum instance for the US region.
When used in a request method, the `marketplace_id` value will be used automatically.

print(my_market.marketplace_id)
'ATVPDKIKX0DER'
print(my_market.value)
'ATVPDKIKX0DER'
(alias for `.marketplace_id`)

You can also return the endpoint for that region, if needed:
print(my_market.endpoint)
'https://mws.amazonservices.com'

In all examples below, replace my_market with the Marketplaces Enum instance or MarketplaceId string value
relevant to your region.

Products API reference

	
class mws.Products(access_key, secret_key, account_id, region='US', uri='', version='', auth_token='', proxy=None, user_agent_str='', headers=None, force_response_encoding=None)

	Amazon MWS Products API

MWS Docs: Products API Overview [https://docs.developer.amazonservices.com/en_US/products/Products_Overview.html]

	
list_matching_products(marketplace_id, query, context_id=None)

	Returns a list of products and their attributes, based on a search query.

MWS Docs: ListMatchingProducts [https://docs.developer.amazonservices.com/en_US/products/Products_ListMatchingProducts.html]

Examples:

	Obtaining ASINs for products returned by the query "Python":

resp = products_api.list_matching_products(
 marketplace_id=my_market,
 query="Python",
)

for product in resp.parsed.Products.Product:
 asin = product.Identifiers.MarketplaceASIN.ASIN
 print(f"ASIN: {asin}")

Note

As a shorthand, you may access the first product from the response using a list index:

resp.parsed.Products.Product[0].Identifiers.MarketplaceASIN.ASIN

Beware: if only one product is returned, this may result in an error, as the Product node
will not be a list. Iterating nodes is generally safer to avoid this issue (see:
DotDict Native Iteration).

	Returning sales rank categories and rank numbers:

for product in resp.parsed.Products.Product:
 for rank in product.SalesRankings.SalesRank:
 category_id = rank.ProductCategoryId
 sales_rank = rank.Rank
 print(f"Category: {category_id}, Rank: {sales_rank}")

	Returning product titles:

for product in resp.parsed.Products.Product:
 product_title = product.AttributeSets.ItemAttributes.Title
 print(f"Title: {product_title}")

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	query (str) –

	context_id (Optional[str]) –

	
get_matching_product(marketplace_id, asins)

	Returns a list of products and their attributes, based on a list of ASIN values.

MWS Docs: GetMatchingProduct [https://docs.developer.amazonservices.com/en_US/products/Products_GetMatchingProduct.html]

Example

resp = products_api.get_matching_product(
 marketplace_id=my_market,
 asins=["B085G58KWT", "B07ZZW7QCM"],
)

Iterate over products returned by the request
for product in resp.parsed.Product:
 # Access identifiers
 print(product.Identifiers.MarketplaceASIN.ASIN)
 print(product.Identifiers.MarketplaceASIN.MarketplaceId)

 # Attributes of the product, for instance a ListPrice (by amount and currency code):
 print(product.AttributeSets.ItemAttributes.ListPrice.Amount)
 print(product.AttributeSets.ItemAttributes.ListPrice.CurrencyCode)

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	asins (Union[List[str], str]) –

	
get_matching_product_for_id(marketplace_id: str, type_: str, ids: Union[List[str], str])

	Returns a list of products and their attributes, based on a list of
ASIN, GCID, SellerSKU, UPC, EAN, ISBN, and JAN values.

MWS Docs: GetMatchingProductForId [https://docs.developer.amazonservices.com/en_US/products/Products_GetMatchingProductForId.html]

Example

resp = products_api.get_matching_product_for_id(
 marketplace_id=my_market,
 type_="ASIN",
 ids=["B085G58KWT", "B07ZZW7QCM"],
)

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	type_ (str) –

	ids (Union[List[str], str]) –

	
get_competitive_pricing_for_sku(marketplace_id, skus)

	Returns the current competitive price of a product, based on SellerSKU.

MWS Docs: GetCompetitivePricingForSKU [https://docs.developer.amazonservices.com/en_US/products/Products_GetCompetitivePricingForSKU.html]

Example

resp = products_api.get_competitive_pricing_for_sku(
 marketplace_id=my_market,
 skus=["OO-NL0F-795Z"],
)

for product in resp.parsed.Product:
 product.CompetitivePricing.NumberOfOfferListings
 product.CompetitivePricing.CompetitivePrices.CompetitivePrice.Price.LandedPrice.Amount

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	skus (Union[List[str], str]) –

	
get_competitive_pricing_for_asin(marketplace_id, asins)

	Returns the current competitive price of a product, based on ASIN.

MWS Docs: GetCompetitivePricingForASIN [https://docs.developer.amazonservices.com/en_US/products/Products_GetCompetitivePricingForASIN.html]

Example

resp = products_api.get_competitive_pricing_for_asin(
 marketplace_id=my_market,
 asins=["B085G58KWT"],
)

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	asins (Union[List[str], str]) –

	
get_lowest_offer_listings_for_sku(marketplace_id, skus, condition='Any', exclude_me=False)

	Returns pricing information for the lowest-price active offer listings for up to 20 products,
based on SellerSKU.

MWS Docs: GetLowestOfferListingsForSKU [https://docs.developer.amazonservices.com/en_US/products/Products_GetLowestOfferListingsForSKU.html]

Example

resp = products_api.get_lowest_offer_listings_for_sku(
 marketplace_id=my_market,
 skus=["OO-NL0F-795Z"],
 condition="New" # Any, New, Used, Collectible, Refurbished, Club. Default = Any
)

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	skus (Union[List[str], str]) –

	condition (str) –

	exclude_me (bool) –

	
get_lowest_offer_listings_for_asin(marketplace_id, asins, condition='Any', exclude_me=False)

	Returns pricing information for the lowest-price active offer listings for up to 20 products, based on ASIN.

MWS Docs: GetLowestOfferListingsForASIN [https://docs.developer.amazonservices.com/en_US/products/Products_GetLowestOfferListingsForASIN.html]

Example

resp = products_api.get_lowest_offer_listings_for_asin(
 marketplace_id=my_market,
 asins=["B085G58KWT"],
 condition="New" # Any, New, Used, Collectible, Refurbished, Club. Default = Any
)

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	asins (Union[List[str], str]) –

	condition (str) –

	exclude_me (bool) –

	
get_lowest_priced_offers_for_sku(marketplace_id, sku, condition='New', exclude_me=False)

	Returns lowest priced offers for a single product, based on SellerSKU.

MWS Docs: GetLowestPricedOffersForSKU [https://docs.developer.amazonservices.com/en_US/products/Products_GetLowestPricedOffersForSKU.html]

Example

resp = products_api.get_lowest_priced_offers_for_sku(
 marketplace_id=my_market,
 skus=["OO-NL0F-795Z"],
 condition="New" # Any, New, Used, Collectible, Refurbished, Club. Default = Any
)

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	sku (str) –

	condition (str) –

	exclude_me (bool) –

	
get_lowest_priced_offers_for_asin(marketplace_id, asin, condition='New', exclude_me=False)

	Returns lowest priced offers for a single product, based on ASIN.

MWS Docs: GetLowestPricedOffersForASIN [https://docs.developer.amazonservices.com/en_US/products/Products_GetLowestPricedOffersForASIN.html]

Example

resp = products_api.get_lowest_priced_offers_for_asin(
 marketplace_id=my_market,
 asins=["B085G58KWT"],
 condition="New" # Any, New, Used, Collectible, Refurbished, Club. Default = Any
)

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	asin (str) –

	condition (str) –

	exclude_me (bool) –

	
get_my_fees_estimate(fees_estimate, *fees_estimates)

	Returns the estimated fees for a list of products.

MWS Docs: GetMyFeesEstimate [https://docs.developer.amazonservices.com/en_US/products/Products_GetMyFeesEstimate.html]

Accepts one or more FeesEstimateRequest instances as
arguments:

Example

estimate_request = FeesEstimateRequest(...)
resp = products_api.get_my_fees_estimate(estimate_request)

Multiple estimates can be requested at the same time, as well:

estimate_request1 = FeesEstimateRequest(...)
estimate_request2 = FeesEstimateRequest(...)
resp = products_api.get_my_fees_estimate(estimate_request1, estimate_request2, ...)

	Parameters

	
	fees_estimate (mws.models.products.FeesEstimateRequest) –

	fees_estimates (mws.models.products.FeesEstimateRequest) –

	
get_my_price_for_sku(marketplace_id, skus, condition=None)

	Returns pricing information for your own offer listings, based on SellerSKU.

MWS Docs: GetMyPriceForSKU [https://docs.developer.amazonservices.com/en_US/products/Products_GetMyPriceForSKU.html]

Example

 resp = products_api.get_my_price_for_sku(
 marketplace_id = my_market,
 skus="OO-NL0F-795Z",
 condition="New"
 # Any, New, Used, Collectible, Refurbished, Club. Default = All
)

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	skus (Union[List[str], str]) –

	condition (Optional[str]) –

	
get_my_price_for_asin(marketplace_id, asins, condition=None)

	Returns pricing information for your own offer listings, based on ASIN.

MWS Docs: GetMyPriceForASIN [https://docs.developer.amazonservices.com/en_US/products/Products_GetMyPriceForASIN.html]

Example

resp = products_api.get_my_price_for_asin(
 marketplace_id=my_market,
 asins="B07QR73T66",
 condition="New"
 # Any, New, Used, Collectible, Refurbished, Club. Default = All
)

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	asins (Union[List[str], str]) –

	condition (Optional[str]) –

	
get_product_categories_for_sku(marketplace_id, sku)

	Returns the parent product categories that a product belongs to, based on SellerSKU.

MWS Docs: GetProductCategoriesForSKU [https://docs.developer.amazonservices.com/en_US/products/Products_GetProductCategoriesForSKU.html]

Example

resp = products_api.get_product_categories_for_sku(
 marketplace_id=my_market,
 sku="OO-NL0F-795Z"
)

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	sku (str) –

	
get_product_categories_for_asin(marketplace_id, asin)

	Returns the parent product categories that a product belongs to, based on ASIN.

MWS Docs: GetProductCategoriesForASIN [https://docs.developer.amazonservices.com/en_US/products/Products_GetProductCategoriesForASIN.html]

Example

resp = products_api.get_product_categories_for_asin(
 marketplace_id=my_market,
 asin="B07QR73T66"
)

	Parameters

	
	marketplace_id (Union[mws.mws.Marketplaces, str]) –

	asin (str) –

Data models

Several data models are attached to the Products API class, either from the class itself or an instance of it.
These can be used as arguments for certain requests.

	
class mws.Products.FeesEstimateRequest(marketplace_id, id_type, id_value, price_to_estimate_fees, is_amazon_fulfilled, identifier)

	A product, marketplace, and proposed price used to request estimated fees.

MWS Docs: FeesEstimateRequest [https://docs.developer.amazonservices.com/en_US/products/Products_Datatypes.html#FeesEstimateRequest]

Instances of this model are required for the argument(s) of
get_my_fees_estimate. Constructing an instance of this
model requires the use of other data models in the Products API, as well.

Example

Note

In examples below, we use the Products class definition to locate our models:

from mws import Products
Products.MoneyType(...)

You can also access the same models from any instance of the Products class:

products_api = Products(...)
products_api.MoneyType(...)

	Start by creating MoneyType instances to account for different prices
associated with the request, such as listing_price and shipping:

my_price = Products.MoneyType(
 amount=123.45,
 currency_code=Products.CurrencyCode.GBP,
)
Note the `currency_code` argument also accepts string literals of the currency code:
my_shipping = Products.MoneyType(amount=5.00, currency_code='GBP')

	Combine these prices into a PriceToEstimateFees instance:

my_product_price = Products.PriceToEstimateFees(
 listing_price=my_price,
 shipping=my_shipping,
)

For the JP market only, this price to estimate fees may optionally include
Points.

	Use the PriceToEstimateFees instance along with other data to construct the final
FeesEstimateRequest instance:

estimate_request = Products.FeesEstimateRequest(
 marketplace_id=my_market,
 id_type="ASIN", # either 'ASIN' or 'SKU', indicating the type of the `id_value` argument:
 id_value="B07QR73T66",
 price_to_estimate_fees=my_product_price, # your `PriceToEstimateFees` instance
 is_amazon_fulfilled=False,
 identifier="request001", # a unique identifier of your choosing
)

	
class mws.Products.PriceToEstimateFees(listing_price, shipping, points=None)

	Price information for a product, used to estimate fees.

MWS Docs: PriceToEstimateFees [https://docs.developer.amazonservices.com/en_US/products/Products_Datatypes.html#PriceToEstimateFees]

Accepts instances of MoneyType for its listing_price and
shipping, and optionally accepts a Points instance
to denote a points value (in JP region only).

	
class mws.Products.MoneyType(amount, currency_code)

	An amount of money in a specified currency.

MWS Docs: MoneyType [https://docs.developer.amazonservices.com/en_US/products/Products_Datatypes.html#MoneyType]

Example

my_money = Products.MoneyType(
 amount=3.50,
 currency_code=Products.CurrencyCode.USD,
)

	
class mws.Products.Points(points_number, monetary_value)

	The number of Amazon Points offered with the purchase of an item.
The Amazon Points program is only available in Japan.

MWS Docs: Points [https://docs.developer.amazonservices.com/en_US/products/Products_Datatypes.html#Points]

Points are expressed in terms of a points_number and a monetary_value for those points, the latter of which
must be an instance of MoneyType.

Example:

A monetary value of 2000 Japanese yen
monetary_value = Products.MoneyType(
 amount=2000.0,
 currency_code=Products.CurrencyCode.JPY,
)

Now assign the points like so:
points = Products.Points(
 points_number=35,
 monetary_value=monetary_value,
)

When used in a request, points will be converted to a set of parameters like so:

print(points.to_params())
{'PointsNumber': 35, 'PointsMonetaryValue.Amount': 2000.0, 'PointsMonetaryValue.CurrencyCode': <CurrencyCode.JPY: ('JPY', 'Japanese yen')>}

Note

You will see the PointsMonetaryValue.CurrencyCode element remains an instance of Enum at this stage.
When used in a request, it is automatically “cleaned” to its parameterized value, 'JPY'.

Passing the string literal 'JPY' as the MoneyType.currency_code argument is also accepted.

Enums

Related Enums are also attached to the Products API class, and can be accessed the same way as Data models.

	
class mws.Products.CurrencyCode(value)

	Bases: str, enum.Enum

Constants for currency codes supported by Amazon.

Example:

10 US dollars
listing_price = Products.MoneyType(
 amount=10.0,
 currency_code=Products.CurrencyCode.USD,
)
print(listing_price.to_params())
{"Amount": 10.0, "CurrencyCode": "USD"}

30 Chinese yuan
shipping = Products.MoneyType(30.0, Products.CurrencyCode.RMB)
print(shipping.to_params())
{"Amount": 30.0, "CurrencyCode": "RMB"}

	
USD = 'USD'

	United States dollar

	
EUR = 'EUR'

	European euro

	
GBP = 'GBP'

	Great Britain pounds

	
RMB = 'RMB'

	Chinese yuan

	
INR = 'INR'

	Indian rupee

	
JPY = 'JPY'

	Japanese yen

	
CAD = 'CAD'

	Canadian dollar

	
MXN = 'MXN'

	Mexican peso

Reports

According to Amazon’s documentation [https://docs.developer.amazonservices.com/en_US/reports/Reports_Overview.html]:

The Reports API section of the Amazon Marketplace Web Service (Amazon MWS)
API lets you request various reports that help you manage your Sell on
Amazon business. Report types are specified using the ReportTypes
enumeration.

Reports API reference

	
class mws.Reports(access_key, secret_key, account_id, region='US', uri='', version='', auth_token='', proxy=None, user_agent_str='', headers=None, force_response_encoding=None)

	Amazon MWS Reports API.

MWS Docs: Reports API Overview [https://docs.developer.amazonservices.com/en_US/reports/Reports_Overview.html]

	
request_report(report_type, start_date=None, end_date=None, marketplace_ids=None, report_options=None)

	Creates a report request and submits the request to Amazon MWS.

MWS Docs: RequestReport [https://docs.developer.amazonservices.com/en_US/reports/Reports_RequestReport.html]

	Parameters

	
	report_type (Union[mws.models.reports.ReportType, str]) –

	start_date (Union[datetime.datetime, datetime.date]) –

	end_date (Union[datetime.datetime, datetime.date]) –

	marketplace_ids (List[Union[mws.mws.Marketplaces, str]]) –

	report_options (dict) –

	
get_report_request_list(request_ids=None, report_types=None, processing_statuses=None, max_count=None, from_date=None, to_date=None, next_token=None)

	Returns a list of report requests that you can use
to get the ReportRequestId for a report.

Pass next_token with no other arguments to call the
GetReportRequestListByNextToken operation, requesting the next page of results.

MWS Docs: GetReportRequestList [https://docs.developer.amazonservices.com/en_US/reports/Reports_GetReportRequestList.html]

	Parameters

	
	request_ids (List[str]) –

	report_types (List[Union[mws.models.reports.ReportType, str]]) –

	processing_statuses (List[Union[mws.models.reports.ProcessingStatus, str]]) –

	max_count (int) –

	from_date (Union[datetime.datetime, datetime.date]) –

	to_date (Union[datetime.datetime, datetime.date]) –

	next_token (str) –

	
get_report_request_list_by_next_token(token)

	Alias for get_report_request_list(next_token=token).

MWS Docs: GetReportRequestListByNextToken [https://docs.developer.amazonservices.com/en_US/reports/Reports_GetReportRequestListByNextToken.html]

	Parameters

	token (str) –

	
get_report_request_count(report_types=None, processing_statuses=None, from_date=None, to_date=None)

	Returns a count of report requests that have been submitted
to Amazon MWS for processing.

MWS Docs: GetReportRequestCount [https://docs.developer.amazonservices.com/en_US/reports/Reports_GetReportRequestCount.html]

	Parameters

	
	report_types (List[Union[mws.models.reports.ReportType, str]]) –

	processing_statuses (List[Union[mws.models.reports.ProcessingStatus, str]]) –

	from_date (Union[datetime.datetime, datetime.date]) –

	to_date (Union[datetime.datetime, datetime.date]) –

	
cancel_report_requests(request_ids=None, report_types=None, processing_statuses=None, from_date=None, to_date=None)

	Cancels one or more report requests.

MWS Docs: CancelReportRequests [https://docs.developer.amazonservices.com/en_US/reports/Reports_CancelReportRequests.html]

	Parameters

	
	request_ids (Optional[List[str]]) –

	report_types (Optional[List[Union[mws.models.reports.ReportType, str]]]) –

	processing_statuses (Optional[List[Union[mws.models.reports.ProcessingStatus, str]]]) –

	from_date (Optional[Union[datetime.datetime, datetime.date]]) –

	to_date (Optional[Union[datetime.datetime, datetime.date]]) –

	
get_report_list(request_ids=None, max_count=None, report_types=None, acknowledged=None, from_date=None, to_date=None, next_token=None)

	Returns a list of reports that were created between fromdate and todate
(defaults to previous 90 days if ommitted).

Pass next_token with no other arguments to call the
GetReportListByNextToken operation, requesting the next page of results.

MWS Docs: GetReportList [https://docs.developer.amazonservices.com/en_US/reports/Reports_GetReportList.html]

	Parameters

	
	request_ids (List[str]) –

	max_count (int) –

	report_types (List[Union[mws.models.reports.ReportType, str]]) –

	acknowledged (bool) –

	from_date (Union[datetime.datetime, datetime.date]) –

	to_date (Union[datetime.datetime, datetime.date]) –

	next_token (str) –

	
get_report_list_by_next_token(token)

	Alias for get_report_list(next_token=token).

MWS Docs: GetReportListByNextToken [https://docs.developer.amazonservices.com/en_US/reports/Reports_GetReportListByNextToken.html]

	Parameters

	token (str) –

	
get_report_count(report_types=None, acknowledged=None, from_date=None, to_date=None)

	Returns a count of the reports, created in the previous 90 days,
with a status of _DONE_ and that are available for download.

MWS Docs: GetReportCount [https://docs.developer.amazonservices.com/en_US/reports/Reports_GetReportCount.html]

	Parameters

	
	report_types (List[Union[mws.models.reports.ReportType, str]]) –

	acknowledged (bool) –

	from_date (Union[datetime.datetime, datetime.date]) –

	to_date (Union[datetime.datetime, datetime.date]) –

	
get_report(report_id)

	Returns the contents of a report and the Content-MD5 header for the returned report body.

MWS Docs: GetReport [https://docs.developer.amazonservices.com/en_US/reports/Reports_GetReport.html]

	Parameters

	report_id (str) –

	
manage_report_schedule(report_type, schedule, schedule_date=None)

	Creates, updates, or deletes a report request schedule for a specified report type.

MWS Docs: ManageReportSchedule [https://docs.developer.amazonservices.com/en_US/reports/Reports_ManageReportSchedule.html]

	Parameters

	
	report_type (mws.models.reports.ReportType) –

	schedule (mws.models.reports.Schedule) –

	schedule_date (Optional[Union[datetime.datetime, datetime.date]]) –

	
get_report_schedule_list(report_types=None, next_token=None)

	Returns a list of order report requests that are scheduled
to be submitted to Amazon MWS for processing.

Pass next_token with no other arguments to call the
GetReportScheduleListByNextToken operation, requesting the next page of results.

MWS Docs: GetReportScheduleList [https://docs.developer.amazonservices.com/en_US/reports/Reports_GetReportScheduleList.html]

	Parameters

	
	report_types (List[Union[mws.models.reports.ReportType, str]]) –

	next_token (str) –

	
get_report_schedule_list_by_next_token(token)

	Alias for get_report_schedule_list(next_token=token).

MWS Docs: GetReportScheduleListByNextToken [https://docs.developer.amazonservices.com/en_US/reports/Reports_GetReportScheduleListByNextToken.html]

	Parameters

	token (str) –

	
get_report_schedule_count(report_types=None)

	Returns a count of order report requests that are scheduled to be submitted to Amazon MWS.

MWS Docs: GetReportScheduleCount [https://docs.developer.amazonservices.com/en_US/reports/Reports_GetReportScheduleCount.html]

	Parameters

	report_types (List[Union[mws.models.reports.ReportType, str]]) –

	
update_report_acknowledgements(report_ids=None, acknowledged=None)

	Updates the acknowledged status of one or more reports.

MWS Docs: UpdateReportAcknowledgements [https://docs.developer.amazonservices.com/en_US/reports/Reports_UpdateReportAcknowledgements.html]

	Parameters

	
	report_ids (Optional[List[str]]) –

	acknowledged (Optional[bool]) –

Enums

	
class mws.Reports.ReportType(value)

	Bases: str, enum.Enum

An enumeration of the types of reports that can be requested from Amazon MWS.

MWS Docs: ReportType enumeration [https://docs.developer.amazonservices.com/en_US/reports/Reports_ReportType.html]

Available values

You can use either the Enum instance itself or its string value as an
argument in relevant request methods. Each of the below examples may be
used in a request for a flat file of open listings:

from mws import Reports

my_report_type = Reports.ReportType.INVENTORY
OR
my_report_type = Reports.ReportType.INVENTORY.value
OR
my_report_type = '_GET_FLAT_FILE_OPEN_LISTINGS_DATA_'

	
INVENTORY = '_GET_FLAT_FILE_OPEN_LISTINGS_DATA_'

	

	
ALL_LISTINGS = '_GET_MERCHANT_LISTINGS_ALL_DATA_'

	

	
ACTIVE_LISTINGS = '_GET_MERCHANT_LISTINGS_DATA_'

	

	
INACTIVE_LISTINGS = '_GET_MERCHANT_LISTINGS_INACTIVE_DATA_'

	

	
OPEN_LISTINGS = '_GET_MERCHANT_LISTINGS_DATA_BACK_COMPAT_'

	

	
OPEN_LISTINGS_LITE = '_GET_MERCHANT_LISTINGS_DATA_LITE_'

	

	
OPEN_LISTINGS_LITER = '_GET_MERCHANT_LISTINGS_DATA_LITER_'

	

	
CANCELED_LISTINGS = '_GET_MERCHANT_CANCELLED_LISTINGS_DATA_'

	

	
SOLD_LISTINGS = '_GET_CONVERGED_FLAT_FILE_SOLD_LISTINGS_DATA_'

	

	
LISTING_QUALITY_AND_SUPPRESSED = '_GET_MERCHANT_LISTINGS_DEFECT_DATA_'

	

	
PAN_EUROPEAN_ELIGIBILITY_FBA_ASINS = '_GET_PAN_EU_OFFER_STATUS_'

	

	
PAN_EUROPEAN_ELIGIBILITY_SELF_FULFILLED_ASINS = '_GET_MFN_PAN_EU_OFFER_STATUS_'

	

	
GLOBAL_EXPANSION_OPPORTUNITIES = '_GET_FLAT_FILE_GEO_OPPORTUNITIES_'

	

	
REFERRAL_FEE_PREVIEW = '_GET_REFERRAL_FEE_PREVIEW_REPORT_'

	

	
ORDERS_UNSHIPPED = '_GET_FLAT_FILE_ACTIONABLE_ORDER_DATA_'

	

	
ORDERS_SCHEDULED_XML = '_GET_ORDERS_DATA_'

	

	
ORDERS_REQUESTED_OR_SCHEDULED = '_GET_FLAT_FILE_ORDERS_DATA_'

	

	
ORDERS_CONVERGED = '_GET_CONVERGED_FLAT_FILE_ORDER_REPORT_DATA_'

	

	
TRACKING_BY_LAST_UPDATE = '_GET_FLAT_FILE_ALL_ORDERS_DATA_BY_LAST_UPDATE_'

	

	
TRACKING_BY_ORDER_DATE = '_GET_FLAT_FILE_ALL_ORDERS_DATA_BY_ORDER_DATE_'

	

	
TRACKING_ARCHIVED_ORDERS_FLATFILE = '_GET_FLAT_FILE_ARCHIVED_ORDERS_DATA_BY_ORDER_DATE_'

	

	
TRACKING_BY_LAST_UPDATE_XML = '_GET_XML_ALL_ORDERS_DATA_BY_LAST_UPDATE_'

	

	
TRACKING_BY_ORDER_DATE_XML = '_GET_XML_ALL_ORDERS_DATA_BY_ORDER_DATE_'

	

	
PENDING_ORDERS_FLAT_FILE = '_GET_FLAT_FILE_PENDING_ORDERS_DATA_'

	

	
PENDING_ORDERS_XML = '_GET_PENDING_ORDERS_DATA_'

	

	
PENDING_ORDERS_CONVERGED_FLAT_FILE = '_GET_CONVERGED_FLAT_FILE_PENDING_ORDERS_DATA_'

	

	
RETURNS_XML_DATA_BY_RETURN_DATE = '_GET_XML_RETURNS_DATA_BY_RETURN_DATE_'

	

	
RETURNS_FLAT_FILE_RETURNS_DATA_BY_RETURN_DATE = '_GET_FLAT_FILE_RETURNS_DATA_BY_RETURN_DATE_'

	

	
RETURNS_XML_MFN_PRIME_RETURNS_REPORT = '_GET_XML_MFN_PRIME_RETURNS_REPORT_'

	

	
RETURNS_CSV_MFN_PRIME_RETURNS_REPORT = '_GET_CSV_MFN_PRIME_RETURNS_REPORT_'

	

	
RETURNS_XML_MFN_SKU_RETURN_ATTRIBUTES_REPORT = '_GET_XML_MFN_SKU_RETURN_ATTRIBUTES_REPORT_'

	

	
RETURNS_FLAT_FILE_MFN_SKU_RETURN_ATTRIBUTES_REPORT = '_GET_FLAT_FILE_MFN_SKU_RETURN_ATTRIBUTES_REPORT_'

	

	
PERFORMANCE_FEEDBACK = '_GET_SELLER_FEEDBACK_DATA_'

	

	
PERFORMANCE_CUSTOMER_METRICS_XML = '_GET_V1_SELLER_PERFORMANCE_REPORT_'

	

	
SETTLEMENT_FLATFILE = '_GET_V2_SETTLEMENT_REPORT_DATA_FLAT_FILE_'

	

	
SETTLEMENT_V2_XML = '_GET_V2_SETTLEMENT_REPORT_DATA_XML_'

	

	
SETTLEMENT_V2_FLATFILE = '_GET_V2_SETTLEMENT_REPORT_DATA_FLAT_FILE_V2_'

	

	
FBA_SALES_AMAZON_FULFILLED = '_GET_AMAZON_FULFILLED_SHIPMENTS_DATA_'

	

	
FBA_SALES_ALL_LAST_UPDATE = '_GET_FLAT_FILE_ALL_ORDERS_DATA_BY_LAST_UPDATE_'

	

	
FBA_SALES_ALL_BY_ORDER_DATE = '_GET_FLAT_FILE_ALL_ORDERS_DATA_BY_ORDER_DATE_'

	

	
FBA_SALES_ALL_BY_LAST_UPDATE_XML = '_GET_XML_ALL_ORDERS_DATA_BY_LAST_UPDATE_'

	

	
FBA_SALES_ALL_BY_ORDER_DATE_XML = '_GET_XML_ALL_ORDERS_DATA_BY_ORDER_DATE_'

	

	
FBA_SALES_CUSTOMER_SHIPMENT = '_GET_FBA_FULFILLMENT_CUSTOMER_SHIPMENT_SALES_DATA_'

	

	
FBA_SALES_PROMOTIONS = '_GET_FBA_FULFILLMENT_CUSTOMER_SHIPMENT_PROMOTION_DATA_'

	

	
FBA_SALES_CUSTOMER_TAXES = '_GET_FBA_FULFILLMENT_CUSTOMER_TAXES_DATA_'

	

	
FBA_SALES_REMOTE_FULFILLMENT_ELIGIBILITY = '_GET_REMOTE_FULFILLMENT_ELIGIBILITY_'

	

	
FBA_INVENTORY_AFN = '_GET_AFN_INVENTORY_DATA_'

	

	
FBA_INVENTORY_AFN_BY_COUNTRY = '_GET_AFN_INVENTORY_DATA_BY_COUNTRY_'

	

	
FBA_INVENTORY_HISTORY_DAILY = '_GET_FBA_FULFILLMENT_CURRENT_INVENTORY_DATA_'

	

	
FBA_INVENTORY_HISTORY_MONTHLY = '_GET_FBA_FULFILLMENT_MONTHLY_INVENTORY_DATA_'

	

	
FBA_INVENTORY_RECEIVED = '_GET_FBA_FULFILLMENT_INVENTORY_RECEIPTS_DATA_'

	

	
FBA_INVENTORY_RESERVED = '_GET_RESERVED_INVENTORY_DATA_'

	

	
FBA_INVENTORY_EVENT_DETAIL = '_GET_FBA_FULFILLMENT_INVENTORY_SUMMARY_DATA_'

	

	
FBA_INVENTORY_ADJUSTMENTS = '_GET_FBA_FULFILLMENT_INVENTORY_ADJUSTMENTS_DATA_'

	

	
FBA_INVENTORY_HEALTH = '_GET_FBA_FULFILLMENT_INVENTORY_HEALTH_DATA_'

	

	
FBA_INVENTORY_MANAGE_ACTIVE = '_GET_FBA_MYI_UNSUPPRESSED_INVENTORY_DATA_'

	

	
FBA_INVENTORY_MANAGE_ALL = '_GET_FBA_MYI_ALL_INVENTORY_DATA_'

	

	
FBA_INVENTORY_RESTOCK_INVENTORY = '_GET_RESTOCK_INVENTORY_RECOMMENDATIONS_REPORT_'

	

	
FBA_INVENTORY_CROSS_BORDER_MOVEMENT = '_GET_FBA_FULFILLMENT_CROSS_BORDER_INVENTORY_MOVEMENT_DATA_'

	

	
FBA_INVENTORY_INBOUND_PERFORMANCE = '_GET_FBA_FULFILLMENT_INBOUND_NONCOMPLIANCE_DATA_'

	

	
FBA_INVENTORY_STRANDED = '_GET_STRANDED_INVENTORY_UI_DATA_'

	

	
FBA_INVENTORY_BULK_FIX_STRANDED = '_GET_STRANDED_INVENTORY_LOADER_DATA_'

	

	
FBA_INVENTORY_AGE = '_GET_FBA_INVENTORY_AGED_DATA_'

	

	
FBA_INVENTORY_EXCESS = '_GET_EXCESS_INVENTORY_DATA_'

	

	
FBA_INVENTORY_STORAGE_FEE_CHARGES = '_GET_FBA_STORAGE_FEE_CHARGES_DATA_'

	

	
FBA_INVENTORY_PRODUCT_EXCHANGE = '_GET_PRODUCT_EXCHANGE_DATA_'

	

	
FBA_PAYMENTS_FEE_PREVIEW = '_GET_FBA_ESTIMATED_FBA_FEES_TXT_DATA_'

	

	
FBA_PAYMENTS_REIMBURSEMENTS = '_GET_FBA_REIMBURSEMENTS_DATA_'

	

	
FBA_PAYMENTS_LONGTERM_STORAGE_FEE_CHARGES = '_GET_FBA_FULFILLMENT_LONGTERM_STORAGE_FEE_CHARGES_DATA_'

	

	
FBA_CONCESSION_RETURNS = '_GET_FBA_FULFILLMENT_CUSTOMER_RETURNS_DATA_'

	

	
FBA_CONCESSION_SHIPMENT_REPLACEMENT = '_GET_FBA_FULFILLMENT_CUSTOMER_SHIPMENT_REPLACEMENT_DATA_'

	

	
FBA_REMOVAL_RECOMMENDED = '_GET_FBA_RECOMMENDED_REMOVAL_DATA_'

	

	
FBA_REMOVAL_ORDER_DETAIL = '_GET_FBA_FULFILLMENT_REMOVAL_ORDER_DETAIL_DATA_'

	

	
FBA_REMOVAL_SHIPMENT_DETAIL = '_GET_FBA_FULFILLMENT_REMOVAL_SHIPMENT_DETAIL_DATA_'

	

	
FBA_SMALL_LIGHT_INVENTORY = '_GET_FBA_UNO_INVENTORY_DATA_'

	

	
SALES_TAX = '_GET_FLAT_FILE_SALES_TAX_DATA_'

	

	
VAT_CALCULATION = '_SC_VAT_TAX_REPORT_'

	

	
VAT_TRANSACTIONS = '_GET_VAT_TRANSACTION_DATA_'

	

	
TAX_GST_MERCHANT_B2B = '_GET_GST_MTR_B2B_CUSTOM_'

	

	
TAX_GST_MERCHANT_B2C = '_GET_GST_MTR_B2C_CUSTOM_'

	

	
BROWSE_TREE = '_GET_XML_BROWSE_TREE_DATA_'

	

	
EASYSHIP_DOCUMENTS = '_GET_EASYSHIP_DOCUMENTS_'

	

	
EASYSHIP_PICKED_UP = '_GET_EASYSHIP_PICKEDUP_'

	

	
EASYSHIP_WAITING_FOR_PICKUP = '_GET_EASYSHIP_WAITING_FOR_PICKUP_'

	

	
AMZN_BUSINESS_FEE_DISCOUNTS_REPORT = '_FEE_DISCOUNTS_REPORT_'

	

	
AMZN_BUSINESS_RFQD_BULK_DOWNLOAD = '_RFQD_BULK_DOWNLOAD_'

	

	
AMAZONPAY_SANDBOX_SETTLEMENT = '_GET_FLAT_FILE_OFFAMAZONPAYMENTS_SANDBOX_SETTLEMENT_DATA_'

	

	
class mws.Reports.Schedule(value)

	Bases: str, enum.Enum

An enumeration of the units of time that reports can be requested.

MWS Docs: Schedule enumeration [https://docs.developer.amazonservices.com/en_US/reports/Reports_Schedule.html]

Available values

Several schedule frequencies are provided by Amazon, and this Enum
provides easy access to all of them through several aliases for each
schedule type.

	
EVERY_15_MIN = '_15_MINUTES_'

	

	
EVERY_15_MINS = '_15_MINUTES_'

	

	
EVERY_15_MINUTE = '_15_MINUTES_'

	

	
EVERY_15_MINUTES = '_15_MINUTES_'

	

	
EVERY_30_MIN = '_30_MINUTES_'

	

	
EVERY_30_MINS = '_30_MINUTES_'

	

	
EVERY_30_MINUTE = '_30_MINUTES_'

	

	
EVERY_30_MINUTES = '_30_MINUTES_'

	

	
EVERY_HOUR = '_1_HOUR_'

	

	
EVERY_1_HOUR = '_1_HOUR_'

	

	
EVERY_1_HOURS = '_1_HOUR_'

	

	
EVERY_2_HOUR = '_2_HOURS_'

	

	
EVERY_2_HOURS = '_2_HOURS_'

	

	
EVERY_4_HOUR = '_4_HOURS_'

	

	
EVERY_4_HOURS = '_4_HOURS_'

	

	
EVERY_8_HOUR = '_8_HOURS_'

	

	
EVERY_8_HOURS = '_8_HOURS_'

	

	
EVERY_12_HOUR = '_12_HOURS_'

	

	
EVERY_12_HOURS = '_12_HOURS_'

	

	
DAILY = '_1_DAY_'

	

	
EVERY_DAY = '_1_DAY_'

	

	
EVERY_1_DAY = '_1_DAY_'

	

	
EVERY_1_DAYS = '_1_DAY_'

	

	
EVERY_2_DAY = '_2_DAYS_'

	

	
EVERY_2_DAYS = '_2_DAYS_'

	

	
EVERY_48_HOUR = '_2_DAYS_'

	

	
EVERY_48_HOURS = '_2_DAYS_'

	

	
EVERY_3_DAY = '_72_HOURS_'

	

	
EVERY_3_DAYS = '_72_HOURS_'

	

	
EVERY_72_HOUR = '_72_HOURS_'

	

	
EVERY_72_HOURS = '_72_HOURS_'

	

	
WEEKLY = '_1_WEEK_'

	

	
EVERY_WEEK = '_1_WEEK_'

	

	
EVERY_1_WEEK = '_1_WEEK_'

	

	
EVERY_1_WEEKS = '_1_WEEK_'

	

	
EVERY_7_DAY = '_1_WEEK_'

	

	
EVERY_7_DAYS = '_1_WEEK_'

	

	
EVERY_14_DAY = '_14_DAYS_'

	

	
EVERY_14_DAYS = '_14_DAYS_'

	

	
EVERY_2_WEEK = '_14_DAYS_'

	

	
EVERY_2_WEEKS = '_14_DAYS_'

	

	
FORTNIGHTLY = '_14_DAYS_'

	

	
EVERY_15_DAY = '_15_DAYS_'

	

	
EVERY_15_DAYS = '_15_DAYS_'

	

	
EVERY_30_DAY = '_30_DAYS_'

	

	
EVERY_30_DAYS = '_30_DAYS_'

	

	
DELETE = '_NEVER_'

	Delete a previously created report request schedule.

	
class mws.Reports.ProcessingStatus(value)

	Bases: str, enum.Enum

An optional enumeration of common processing_status values.

	
SUBMITTED = '_SUBMITTED_'

	

	
IN_PROGRESS = '_IN_PROGRESS_'

	

	
CANCELLED = '_CANCELLED_'

	

	
CANCELED = '_CANCELLED_'

	An alias for “CANCELLED”, as some folks spell it with one L and
there’s nothing wrong with that.

	
DONE = '_DONE_'

	

	
DONE_NO_DATA = '_DONE_NO_DATA_'

	

DotDict

New in version 1.0dev15: DotDict added.

Warning

The following pertains to features added in v1.0dev15 related to MWS requests.
These features are disabled by default. To use these features, set flag _use_feature_mwsresponse to True
on an API class instance before making any requests:

api_class = Orders(...)
api_class._use_feature_mwsresponse = True

If the flag is False, all requests will return either DictWrapper or DataWrapper objects (deprecated);
and parsed XML contents will be returned as an instance of ObjectDict (deprecated).

New features using MWSResponse and DotDict will become the default in v1.0.

The DotDict class is a subclass of a standard Python dict that provides
access to its keys as attributes. This object is used mainly for parsed XML content returned by
MWSResponse.parsed and
MWSResponse.metadata, but DotDict can also be used as a
general-purpose dict replacement (with some caveats, as shown below).

Keys as attributes

While keys of a DotDict can be accessed the same as keys in a standard dict, they can also be accessed
as attributes:

from mws.utils.collections import DotDict

foo = DotDict({'spam': 'ham'})

print(foo['spam'])
'ham'
print(foo.spam)
'ham'
print(foo.get('spam'))
'ham'

This is useful for traversing the nested structures created by parsing XML documents, where several keys are required
in order to access a leaf node.

Consider the following (truncated and edited) example response from the MWS operation ListMatchingProducts:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 <?xml version="1.0"?>
 <ListMatchingProductsResponse xmlns="http://mws.amazonservices.com/schema/Products/2011-10-01">
 <ListMatchingProductsResult>
 <Products>
 <Product>
 <Identifiers>
 <MarketplaceASIN>
 <MarketplaceId>ACBDEFGH</MarketplaceId>
 <ASIN>B0987654</ASIN>
 </MarketplaceASIN>
 </Identifiers>
 </Product>
 </Products>
 </ListMatchingProductsResult>
 </ListMatchingProductsResponse>

When this document is parsed, accessing the <ASIN> on line 9 using dict keys looks like the following:

assuming `response` is an instance of `MWSResponse`
asin = response.parsed['Products']['Product']['Identifiers']['MarketplaceASIN']['ASIN']

Using attribute access, the above call turns into:

asin = response.parsed.Products.Product.Identifiers.MarketplaceASIN.ASIN

And, of course, a mix of the different methods is possible:

asin = response.parsed['Products'].get('Product').Identifiers['MarketplaceASIN'].get('ASIN')

Tip

Accessing specific data in an MWS response will often produce lengthy code lines, as the above samples show.
We recommend following best practices for Python programs in general, breaking up these longer lines by assigning
chunks of data to intermediary variables:

product = response.parsed.Products.Product
asin = product.Identifiers.MarketplaceASIN.ASIN

Native iteration

XML represents sequences of similar objects by having sibling tags with the same tag name. Consider the following
toy example with three <Product> tags:

 <Response>
 <Products>
 <Product>
 <Name>spam</Name>
 </Product>
 <Product>
 <Name>ham</Name>
 </Product>
 <Product>
 <Name>eggs</Name>
 </Product>
 </Products>
 </Response>

When parsed, these are collected into a list of DotDict instances:

 DotDict({
 'Products': DotDict({
 'Product': [
 DotDict({'Name': 'spam'}),
 DotDict({'Name': 'ham'}),
 DotDict({'Name': 'eggs'}),
]
 })
 })

Note

The list of objects will always be found under the same key name as the duplicate tags, i.e. Product;
not under their parent key, Products. This may seem counterintuitive, but the parser is simply preserving all
tag names present in the XML document.

Further, if a tag attribute is present on the parent <Products> tag, you would be able to access it as a
separate key at the same level as Product. This would not be possible if Products returned a list.

To gather the names of all products in this response, we can simply iterate over this list:

names = []
for product in response.parsed.Products.Product:
 names.append(product.Name)

print(names)
['spam', 'ham', 'eggs']

If the same request returns only one <Product> tag, the Product key in the parsed response will return only
a single DotDict, similar to any other node in the XML tree. Trying to access the Product node in this case
as though it were a list - such as using indices (.Product[0]) - will result in errors.

However, when a DotDict is iterated, it will wrap itself in a list in order to provide the same interface as before.

So, for an XML response like so:

<Response>
 <Products>
 <Product>
 <Name>foo</Name>
 </Product>
 </Products>
</Response>

…the same Python code can be used to access “all” Product keys:

names = []
for product in response.parsed.Products.Product:
 names.append(product.Name)

print(names)
['foo']

Note

While DotDict is a subclass of dict, this behavior is different from that of the standard dict,
where iterating directly on the dict object is equivalent to iterating on dict.keys(). We have chosen to
implement the above behavior to more closely match most users’ intended usage when working with parsed XML,
even though DotDict can be used much like a standard dict for (most) general purposes.

Recursive conversion of dict objects

DotDict instances expect to hold nested data, as seen in the examples throughout this document. As such, any
dict assigned as a value to a DotDict is automatically converted to a DotDict, as well. The values
of the assigned dict are then recursively built the same way, such that every dict (or other mapping type)
instance in the structure is also converted to DotDict.

This holds true in a variety of scenarios:

	Wrapping a nested dict in DotDict:

example1 = DotDict({'spam': {'ham': {'eggs': 'juice'}}})
print(example1)
DotDict({'spam': DotDict({'ham': DotDict({'eggs': 'juice'})})})

	Using kwargs to build DotDict, with a dict as one of the values:

example2 = DotDict(spam={'muffin': {'cereal': 'milk'}})
print(example2)
DotDict({'spam': DotDict({'muffin': DotDict({'cereal': 'milk'})})})

	Assigning a dict to a key of an existing DotDict, including creating new keys:

example3 = DotDict()
example3.pancakes = {'maple': 'syrup'}
print(example3)
DotDict({'pancakes': DotDict({'maple': 'syrup'})})

example3.pancakes.toast = {'strawberry': 'jam'}
print(example3)
DotDict({'pancakes': DotDict({'maple': 'syrup', 'toast': DotDict({'strawberry': 'jam'})})})

	Using DotDict.update in a similar manner as dict.update:

example4 = DotDict()
example4.update({'chicken': {'waffles': 'honey'}})
print(example4)
DotDict({'chicken': DotDict({'waffles': 'honey'})})

Including a mix of a plain dict and kwargs
example5 = DotDict()
example5.update({'running': {'out': 'of'}}, food='examples', to={'use': 'here'})
print(example5)
DotDict({'running': DotDict({'out': 'of'}), 'food': 'examples', 'to': DotDict({'use': 'here'})})

Working with XML tag attributes

DotDict is used in python-amazon-mws primarily for parsed XML content. As such, some features of the class are
specialized for working with that content.

XML tags can contain attributes with additional data points. When parsed, these attributes are assigned to their own
dict keys starting with @, differentiating them from normal tag names.

Further, tags that contain an attribute and text content will store the text on a special key, #text.

For example, with the following XML document:

 <Response>
 <Products>
 <Product Name="spam">
 <SomethingElse>ham</SomethingElse>
 <WhatHaveYou anotherAttr="foo">eggs</WhatHaveYou>
 </Product>
 </Products>
 </Response>

The parsed response would look like:

 DotDict({
 'Products': DotDict({
 'Product': DotDict({
 '@Name': 'spam',
 'SomethingElse': 'ham',
 'WhatHaveYou': DotDict({
 '@anotherAttr': 'foo',
 '#text': 'eggs'
 })
 })
 })
 })

These @ and #text keys cannot be accessed directly as attributes due to Python syntax, which reserves the
@ and # characters. You can still use standard dict keys to access this content:

print(dotdict.Products.Product['@Name'])
'spam'

print(dotdict.Products.Product.WhatHaveYou['#text'])
'eggs'

DotDict also allows accessing these keys using a fallback method. Simply provide the key name without
@ or # in front, and it will attempt to find a matching key:

print(dotdict.Products.Product.Name)
'spam'

print(dotdict.Products.Product.WhatHaveYou.text)
'eggs'

Note

In case of a conflicting key name, a key matching the attribute will be returned first:

dotdict = DotDict({'foo': 'spam', '@foo': 'ham'})
print(dotdict.foo)
'spam'
print(dotdict['@foo'])
'ham'

This conflict is a rare occurrence for most XML documents, however, as they are not likely to return a tag attribute
with the same name as an immediate child tag.

DotDict API

	
class mws.DotDict(*args, **kwargs)

	Read-only dict-like object class that wraps a mapping object.

New in version 1.0dev15.

	
update(*args, **kwargs)

	Recursively builds values in any nested objects, such that any mapping
object in the nested structure is converted to a DotDict.

	Each nested mapping object will be converted to DotDict.

	Each non-string, non-dict iterable will have elements built, as well.

	All other objects in the data are left unchanged.

	
classmethod build(obj)

	Builds objects to work as recursive versions of this object.

	Mappings are converted to a DotDict object.

	For iterables, each element in the sequence is run through the build method recursively.

	All other objects are returned unchanged.

MWSResponse

New in version 1.0dev15: MWSResponse added

Warning

The following pertains to features added in v1.0dev15 related to MWS requests.
These features are disabled by default. To use these features, set flag _use_feature_mwsresponse to True
on an API class instance before making any requests:

api_class = Orders(...)
api_class._use_feature_mwsresponse = True

If the flag is False, all requests will return either DictWrapper or DataWrapper objects (deprecated);
and parsed XML contents will be returned as an instance of ObjectDict (deprecated).

New features using MWSResponse and DotDict will become the default in v1.0.

MWSResponse acts as a wrapper for requests.Response objects returned from requests made to MWS.
When initialized, the response content is automatically parsed for XML content,
making it available as a DotDict instance in MWSResponse.parsed.

Parsed content for XML responses

All XML response content is automatically parsed using the xmltodict package. The parsed results are stored as a
DotDict accessible from
MWSResponse.parsed.

For more details on working with the parsed content, please see DotDict.

Original response access

As MWSResponse wraps a requests.Response object, all data and methods of that underlying object can be accessed
from the MWSResponse instance using one of the following:

	The MWSResponse.original attribute:

response = api.foo_request(...)
response is an instance of MWSResponse

response.original.status_code
200
response.original.headers
{'Content-Type': ...}

response.original.text # unicode
'Hello world!'
response.original.content # bytes
b'Hello world!'

	A number of shortcut properties available on MWSResponse itself:

response.content # response.original.content
response.cookies # response.original.cookies
response.elapsed # response.original.elapsed
response.encoding # response.original.encoding
response.headers # response.original.headers
response.reason # response.original.reason
response.request # response.original.request
response.status_code # response.original.status_code
response.text # response.original.text

Each of these shortcuts is a read-only property, with the exception of response.encoding, which includes a
setter for convenience when dealing with content encoding issues:

response.encoding = "iso-8859-1"
print(response.original.encoding)
"iso-8859-1"

MWSResponse API

New in version 1.0dev15.

	
class mws.MWSResponse(response, result_key=None, encoding=None, force_cdata=False)

	Wraps a requests.Response object and extracts some known data.

Particularly for XML responses, parsed contents can be found in the .parsed
property as a DotDict instance.

Find metadata in .metadata, mainly for accessing .metadata.RequestId;
or simply use the .request_id shortcut attr.

	Parameters

	
	response (request.Response) – Response object returned by a request sent
to MWS.

	result_key (str) – Key to use as the root for .parsed.
Typically a tag in the root of the response’s XML document whose name ends
in Result. Defaults to None, in which case the full document is
presented when using .parsed.

	force_cdata (bool) – Passed to xmltodict.parse() when parsing
the response’s XML document. Defaults to False.

	
original: requests.Response

	Instance of the original requests.Response object. Can be used to get or set data in the
original response.

	
property encoding

	Shortcut to .original.encoding.
Can also be used as a setter, changing the encoding of the response.
This then changes how content is decoded when using .text.

	
parse_response(force_cdata=False)

	Runs .text through xmltodict.parse(), storing the
returned Python dictionary as ._dict.

If no XML errors occur during that process, constructs
DotDict instances
from the parsed XML data, making them available from
.parsed and .metadata.

For non-XML responses, does nothing.

	Parameters

	force_cdata (bool) – Passed to xml_to_dict.parse() when
parsing XML content. Defaults to False. Ignored for non-XML responses.

	
property parsed

	Returns a parsed version of the response.

For XML documents, returns a DotDict
of the parsed XML content, starting from ._result_key.

For all other types of responses, returns .text instead.

	
property metadata

	Returns a DotDict instance from the
response’s ResponseMetadata key, if present.
Typically the only key of note here is .metadata.RequestId,
which can also be accessed with .request_id.

	
property content

	Shortcut to .original.content, which is bytes.

	
property cookies

	Shortcut to .original.cookies.

	
property elapsed

	Shortcut to .original.elapsed.

	
property headers

	Shortcut to .original.headers.

	
property reason

	Shortcut to .original.reason.

	
property request

	Shortcut to .original.request.

	
property request_id

	Returns the value of a RequestId from .metadata,
if present, otherwise None.

	
property status_code

	Shortcut to .original.status_code.

	
property text

	Shortcut to .original.text, which is unicode.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mws	

 	
 	
 mws.models.inbound_shipments	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	ACTIVE_LISTINGS (mws.Reports.ReportType attribute)

 	Address (class in mws.models.inbound_shipments)

 	ALL_LISTINGS (mws.Reports.ReportType attribute)

 	
 	AMAZONPAY_SANDBOX_SETTLEMENT (mws.Reports.ReportType attribute)

 	AMZN_BUSINESS_FEE_DISCOUNTS_REPORT (mws.Reports.ReportType attribute)

 	AMZN_BUSINESS_RFQD_BULK_DOWNLOAD (mws.Reports.ReportType attribute)

B

 	
 	BLACKSHRINKWRAPPING (mws.models.inbound_shipments.PrepInstruction attribute)

 	BROWSE_TREE (mws.Reports.ReportType attribute)

 	
 	BUBBLEWRAPPING (mws.models.inbound_shipments.PrepInstruction attribute)

 	build() (mws.DotDict class method)

C

 	
 	CAD (mws.Products.CurrencyCode attribute)

 	cancel_feed_submissions() (mws.Feeds method)

 	cancel_report_requests() (mws.Reports method)

 	CANCELED (mws.Reports.ProcessingStatus attribute)

 	CANCELED_LISTINGS (mws.Reports.ReportType attribute)

 	CANCELLED (mws.Reports.ProcessingStatus attribute)

 	CLUB (mws.models.inbound_shipments.ItemCondition attribute)

 	COLLECTIBLE_ACCEPTABLE (mws.models.inbound_shipments.ItemCondition attribute)

 	COLLECTIBLE_GOOD (mws.models.inbound_shipments.ItemCondition attribute)

 	
 	COLLECTIBLE_LIKE_NEW (mws.models.inbound_shipments.ItemCondition attribute)

 	COLLECTIBLE_POOR (mws.models.inbound_shipments.ItemCondition attribute)

 	COLLECTIBLE_VERY_GOOD (mws.models.inbound_shipments.ItemCondition attribute)

 	confirm_preorder() (mws.InboundShipments method)

 	confirm_transport_request() (mws.InboundShipments method)

 	content() (mws.MWSResponse property)

 	cookies() (mws.MWSResponse property)

 	create_inbound_shipment() (mws.InboundShipments method)

 	create_inbound_shipment_plan() (mws.InboundShipments method)

 	CurrencyCode (class in mws.Products)

D

 	
 	DAILY (mws.Reports.Schedule attribute)

 	DELETE (mws.Reports.Schedule attribute)

 	
 	DONE (mws.Reports.ProcessingStatus attribute)

 	DONE_NO_DATA (mws.Reports.ProcessingStatus attribute)

 	DotDict (class in mws)

E

 	
 	EASYSHIP_DOCUMENTS (mws.Reports.ReportType attribute)

 	EASYSHIP_PICKED_UP (mws.Reports.ReportType attribute)

 	EASYSHIP_WAITING_FOR_PICKUP (mws.Reports.ReportType attribute)

 	elapsed() (mws.MWSResponse property)

 	encoding() (mws.MWSResponse property)

 	estimate_transport_request() (mws.InboundShipments method)

 	EUR (mws.Products.CurrencyCode attribute)

 	EVERY_12_HOUR (mws.Reports.Schedule attribute)

 	EVERY_12_HOURS (mws.Reports.Schedule attribute)

 	EVERY_14_DAY (mws.Reports.Schedule attribute)

 	EVERY_14_DAYS (mws.Reports.Schedule attribute)

 	EVERY_15_DAY (mws.Reports.Schedule attribute)

 	EVERY_15_DAYS (mws.Reports.Schedule attribute)

 	EVERY_15_MIN (mws.Reports.Schedule attribute)

 	EVERY_15_MINS (mws.Reports.Schedule attribute)

 	EVERY_15_MINUTE (mws.Reports.Schedule attribute)

 	EVERY_15_MINUTES (mws.Reports.Schedule attribute)

 	EVERY_1_DAY (mws.Reports.Schedule attribute)

 	EVERY_1_DAYS (mws.Reports.Schedule attribute)

 	EVERY_1_HOUR (mws.Reports.Schedule attribute)

 	EVERY_1_HOURS (mws.Reports.Schedule attribute)

 	EVERY_1_WEEK (mws.Reports.Schedule attribute)

 	EVERY_1_WEEKS (mws.Reports.Schedule attribute)

 	EVERY_2_DAY (mws.Reports.Schedule attribute)

 	EVERY_2_DAYS (mws.Reports.Schedule attribute)

 	
 	EVERY_2_HOUR (mws.Reports.Schedule attribute)

 	EVERY_2_HOURS (mws.Reports.Schedule attribute)

 	EVERY_2_WEEK (mws.Reports.Schedule attribute)

 	EVERY_2_WEEKS (mws.Reports.Schedule attribute)

 	EVERY_30_DAY (mws.Reports.Schedule attribute)

 	EVERY_30_DAYS (mws.Reports.Schedule attribute)

 	EVERY_30_MIN (mws.Reports.Schedule attribute)

 	EVERY_30_MINS (mws.Reports.Schedule attribute)

 	EVERY_30_MINUTE (mws.Reports.Schedule attribute)

 	EVERY_30_MINUTES (mws.Reports.Schedule attribute)

 	EVERY_3_DAY (mws.Reports.Schedule attribute)

 	EVERY_3_DAYS (mws.Reports.Schedule attribute)

 	EVERY_48_HOUR (mws.Reports.Schedule attribute)

 	EVERY_48_HOURS (mws.Reports.Schedule attribute)

 	EVERY_4_HOUR (mws.Reports.Schedule attribute)

 	EVERY_4_HOURS (mws.Reports.Schedule attribute)

 	EVERY_72_HOUR (mws.Reports.Schedule attribute)

 	EVERY_72_HOURS (mws.Reports.Schedule attribute)

 	EVERY_7_DAY (mws.Reports.Schedule attribute)

 	EVERY_7_DAYS (mws.Reports.Schedule attribute)

 	EVERY_8_HOUR (mws.Reports.Schedule attribute)

 	EVERY_8_HOURS (mws.Reports.Schedule attribute)

 	EVERY_DAY (mws.Reports.Schedule attribute)

 	EVERY_HOUR (mws.Reports.Schedule attribute)

 	EVERY_WEEK (mws.Reports.Schedule attribute)

 	ExtraItemData (class in mws.models.inbound_shipments)

F

 	
 	FBA_CONCESSION_RETURNS (mws.Reports.ReportType attribute)

 	FBA_CONCESSION_SHIPMENT_REPLACEMENT (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_ADJUSTMENTS (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_AFN (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_AFN_BY_COUNTRY (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_AGE (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_BULK_FIX_STRANDED (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_CROSS_BORDER_MOVEMENT (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_EVENT_DETAIL (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_EXCESS (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_HEALTH (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_HISTORY_DAILY (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_HISTORY_MONTHLY (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_INBOUND_PERFORMANCE (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_MANAGE_ACTIVE (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_MANAGE_ALL (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_PRODUCT_EXCHANGE (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_RECEIVED (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_RESERVED (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_RESTOCK_INVENTORY (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_STORAGE_FEE_CHARGES (mws.Reports.ReportType attribute)

 	FBA_INVENTORY_STRANDED (mws.Reports.ReportType attribute)

 	FBA_PAYMENTS_FEE_PREVIEW (mws.Reports.ReportType attribute)

 	
 	FBA_PAYMENTS_LONGTERM_STORAGE_FEE_CHARGES (mws.Reports.ReportType attribute)

 	FBA_PAYMENTS_REIMBURSEMENTS (mws.Reports.ReportType attribute)

 	FBA_REMOVAL_ORDER_DETAIL (mws.Reports.ReportType attribute)

 	FBA_REMOVAL_RECOMMENDED (mws.Reports.ReportType attribute)

 	FBA_REMOVAL_SHIPMENT_DETAIL (mws.Reports.ReportType attribute)

 	FBA_SALES_ALL_BY_LAST_UPDATE_XML (mws.Reports.ReportType attribute)

 	FBA_SALES_ALL_BY_ORDER_DATE (mws.Reports.ReportType attribute)

 	FBA_SALES_ALL_BY_ORDER_DATE_XML (mws.Reports.ReportType attribute)

 	FBA_SALES_ALL_LAST_UPDATE (mws.Reports.ReportType attribute)

 	FBA_SALES_AMAZON_FULFILLED (mws.Reports.ReportType attribute)

 	FBA_SALES_CUSTOMER_SHIPMENT (mws.Reports.ReportType attribute)

 	FBA_SALES_CUSTOMER_TAXES (mws.Reports.ReportType attribute)

 	FBA_SALES_PROMOTIONS (mws.Reports.ReportType attribute)

 	FBA_SALES_REMOTE_FULFILLMENT_ELIGIBILITY (mws.Reports.ReportType attribute)

 	FBA_SMALL_LIGHT_INVENTORY (mws.Reports.ReportType attribute)

 	Feeds (class in mws)

 	Feeds.FeedProcessingStatus (class in mws)

 	Feeds.FeedType (class in mws)

 	FeesEstimateRequest (class in mws.Products)

 	flat_param_dict() (in module mws.utils.params)

 	FORTNIGHTLY (mws.Reports.Schedule attribute)

 	from_address_params() (mws.InboundShipments method)

 	from_legacy_dict() (mws.models.inbound_shipments.Address class method)

 	from_plan_item() (mws.models.inbound_shipments.InboundShipmentItem class method)

G

 	
 	GBP (mws.Products.CurrencyCode attribute)

 	generic_request() (mws.mws.MWS method)

 	get_bill_of_lading() (mws.InboundShipments method)

 	get_competitive_pricing_for_asin() (mws.Products method)

 	get_competitive_pricing_for_sku() (mws.Products method)

 	get_feed_submission_count() (mws.Feeds method)

 	get_feed_submission_list() (mws.Feeds method)

 	get_feed_submission_list_by_next_token() (mws.Feeds method)

 	get_feed_submission_result() (mws.Feeds method)

 	get_inbound_guidance_for_asin() (mws.InboundShipments method)

 	get_inbound_guidance_for_sku() (mws.InboundShipments method)

 	get_lowest_offer_listings_for_asin() (mws.Products method)

 	get_lowest_offer_listings_for_sku() (mws.Products method)

 	get_lowest_priced_offers_for_asin() (mws.Products method)

 	get_lowest_priced_offers_for_sku() (mws.Products method)

 	get_matching_product() (mws.Products method)

 	get_matching_product_for_id() (mws.Products method)

 	get_my_fees_estimate() (mws.Products method)

 	get_my_price_for_asin() (mws.Products method)

 	get_my_price_for_sku() (mws.Products method)

 	
 	get_package_labels() (mws.InboundShipments method)

 	get_pallet_labels() (mws.InboundShipments method)

 	get_preorder_info() (mws.InboundShipments method)

 	get_prep_instructions_for_asin() (mws.InboundShipments method)

 	get_prep_instructions_for_sku() (mws.InboundShipments method)

 	get_product_categories_for_asin() (mws.Products method)

 	get_product_categories_for_sku() (mws.Products method)

 	get_report() (mws.Reports method)

 	get_report_count() (mws.Reports method)

 	get_report_list() (mws.Reports method)

 	get_report_list_by_next_token() (mws.Reports method)

 	get_report_request_count() (mws.Reports method)

 	get_report_request_list() (mws.Reports method)

 	get_report_request_list_by_next_token() (mws.Reports method)

 	get_report_schedule_count() (mws.Reports method)

 	get_report_schedule_list() (mws.Reports method)

 	get_report_schedule_list_by_next_token() (mws.Reports method)

 	get_transport_content() (mws.InboundShipments method)

 	get_unique_package_labels() (mws.InboundShipments method)

 	GLOBAL_EXPANSION_OPPORTUNITIES (mws.Reports.ReportType attribute)

H

 	
 	HANGGARMENT (mws.models.inbound_shipments.PrepInstruction attribute)

 	
 	headers() (mws.MWSResponse property)

I

 	
 	IN_PROGRESS (mws.Reports.ProcessingStatus attribute)

 	INACTIVE_LISTINGS (mws.Reports.ReportType attribute)

 	InboundShipmentItem (class in mws.models.inbound_shipments)

 	InboundShipmentPlanRequestItem (class in mws.models.inbound_shipments)

 	
 	InboundShipments (class in mws)

 	INR (mws.Products.CurrencyCode attribute)

 	INVENTORY (mws.Reports.ReportType attribute)

 	ItemCondition (class in mws.models.inbound_shipments)

J

 	
 	JPY (mws.Products.CurrencyCode attribute)

L

 	
 	LABELING (mws.models.inbound_shipments.PrepInstruction attribute)

 	list_inbound_shipment_items() (mws.InboundShipments method)

 	list_inbound_shipment_items_by_next_token() (mws.InboundShipments method)

 	
 	list_inbound_shipments() (mws.InboundShipments method)

 	list_inbound_shipments_by_next_token() (mws.InboundShipments method)

 	list_matching_products() (mws.Products method)

 	LISTING_QUALITY_AND_SUPPRESSED (mws.Reports.ReportType attribute)

M

 	
 	manage_report_schedule() (mws.Reports method)

 	metadata() (mws.MWSResponse property)

 	
 module

 	mws.models.inbound_shipments

 	
 	MoneyType (class in mws.Products)

 	
 mws.models.inbound_shipments

 	module

 	MWSResponse (class in mws)

 	MXN (mws.Products.CurrencyCode attribute)

N

 	
 	NEW_ITEM (mws.models.inbound_shipments.ItemCondition attribute)

 	NEW_OEM (mws.models.inbound_shipments.ItemCondition attribute)

 	
 	NEW_OPEN_BOX (mws.models.inbound_shipments.ItemCondition attribute)

 	NEW_WITH_WARRANTY (mws.models.inbound_shipments.ItemCondition attribute)

O

 	
 	OPEN_LISTINGS (mws.Reports.ReportType attribute)

 	OPEN_LISTINGS_LITE (mws.Reports.ReportType attribute)

 	OPEN_LISTINGS_LITER (mws.Reports.ReportType attribute)

 	ORDERS_CONVERGED (mws.Reports.ReportType attribute)

 	
 	ORDERS_REQUESTED_OR_SCHEDULED (mws.Reports.ReportType attribute)

 	ORDERS_SCHEDULED_XML (mws.Reports.ReportType attribute)

 	ORDERS_UNSHIPPED (mws.Reports.ReportType attribute)

 	original (mws.MWSResponse attribute)

P

 	
 	PAN_EUROPEAN_ELIGIBILITY_FBA_ASINS (mws.Reports.ReportType attribute)

 	PAN_EUROPEAN_ELIGIBILITY_SELF_FULFILLED_ASINS (mws.Reports.ReportType attribute)

 	parse_response() (mws.MWSResponse method)

 	parsed() (mws.MWSResponse property)

 	PENDING_ORDERS_CONVERGED_FLAT_FILE (mws.Reports.ReportType attribute)

 	PENDING_ORDERS_FLAT_FILE (mws.Reports.ReportType attribute)

 	PENDING_ORDERS_XML (mws.Reports.ReportType attribute)

 	PERFORMANCE_CUSTOMER_METRICS_XML (mws.Reports.ReportType attribute)

 	
 	PERFORMANCE_FEEDBACK (mws.Reports.ReportType attribute)

 	Points (class in mws.Products)

 	POLYBAGGING (mws.models.inbound_shipments.PrepInstruction attribute)

 	PrepDetails (class in mws.models.inbound_shipments)

 	PrepInstruction (class in mws.models.inbound_shipments)

 	PriceToEstimateFees (class in mws.Products)

 	ProcessingStatus (class in mws.Reports)

 	Products (class in mws)

R

 	
 	reason() (mws.MWSResponse property)

 	REFERRAL_FEE_PREVIEW (mws.Reports.ReportType attribute)

 	REFURBISHED (mws.models.inbound_shipments.ItemCondition attribute)

 	REFURBISHED_WITH_WARRANTY (mws.models.inbound_shipments.ItemCondition attribute)

 	Reports (class in mws)

 	ReportType (class in mws.Reports)

 	request() (mws.MWSResponse property)

 	request_id() (mws.MWSResponse property)

 	
 	request_report() (mws.Reports method)

 	RETURNS_CSV_MFN_PRIME_RETURNS_REPORT (mws.Reports.ReportType attribute)

 	RETURNS_FLAT_FILE_MFN_SKU_RETURN_ATTRIBUTES_REPORT (mws.Reports.ReportType attribute)

 	RETURNS_FLAT_FILE_RETURNS_DATA_BY_RETURN_DATE (mws.Reports.ReportType attribute)

 	RETURNS_XML_DATA_BY_RETURN_DATE (mws.Reports.ReportType attribute)

 	RETURNS_XML_MFN_PRIME_RETURNS_REPORT (mws.Reports.ReportType attribute)

 	RETURNS_XML_MFN_SKU_RETURN_ATTRIBUTES_REPORT (mws.Reports.ReportType attribute)

 	RMB (mws.Products.CurrencyCode attribute)

S

 	
 	SALES_TAX (mws.Reports.ReportType attribute)

 	Schedule (class in mws.Reports)

 	set_ship_from_address() (mws.InboundShipments method)

 	SETTLEMENT_FLATFILE (mws.Reports.ReportType attribute)

 	SETTLEMENT_V2_FLATFILE (mws.Reports.ReportType attribute)

 	
 	SETTLEMENT_V2_XML (mws.Reports.ReportType attribute)

 	shipment_items_from_plan() (in module mws.models.inbound_shipments)

 	SOLD_LISTINGS (mws.Reports.ReportType attribute)

 	status_code() (mws.MWSResponse property)

 	submit_feed() (mws.Feeds method)

 	SUBMITTED (mws.Reports.ProcessingStatus attribute)

T

 	
 	TAPING (mws.models.inbound_shipments.PrepInstruction attribute)

 	TAX_GST_MERCHANT_B2B (mws.Reports.ReportType attribute)

 	TAX_GST_MERCHANT_B2C (mws.Reports.ReportType attribute)

 	text() (mws.MWSResponse property)

 	to_params() (mws.models.inbound_shipments.Address method)

 	(mws.models.inbound_shipments.InboundShipmentItem method)

 	(mws.models.inbound_shipments.InboundShipmentPlanRequestItem method)

 	(mws.models.inbound_shipments.PrepDetails method)

 	
 	TRACKING_ARCHIVED_ORDERS_FLATFILE (mws.Reports.ReportType attribute)

 	TRACKING_BY_LAST_UPDATE (mws.Reports.ReportType attribute)

 	TRACKING_BY_LAST_UPDATE_XML (mws.Reports.ReportType attribute)

 	TRACKING_BY_ORDER_DATE (mws.Reports.ReportType attribute)

 	TRACKING_BY_ORDER_DATE_XML (mws.Reports.ReportType attribute)

U

 	
 	update() (mws.DotDict method)

 	update_inbound_shipment() (mws.InboundShipments method)

 	update_report_acknowledgements() (mws.Reports method)

 	USD (mws.Products.CurrencyCode attribute)

 	USED_ACCEPTABLE (mws.models.inbound_shipments.ItemCondition attribute)

 	
 	USED_GOOD (mws.models.inbound_shipments.ItemCondition attribute)

 	USED_LIKE_NEW (mws.models.inbound_shipments.ItemCondition attribute)

 	USED_POOR (mws.models.inbound_shipments.ItemCondition attribute)

 	USED_REFURBISHED (mws.models.inbound_shipments.ItemCondition attribute)

 	USED_VERY_GOOD (mws.models.inbound_shipments.ItemCondition attribute)

V

 	
 	VAT_CALCULATION (mws.Reports.ReportType attribute)

 	
 	VAT_TRANSACTIONS (mws.Reports.ReportType attribute)

 	void_transport_request() (mws.InboundShipments method)

W

 	
 	WEEKLY (mws.Reports.Schedule attribute)

Warning

The following pertains to features added in v1.0dev15 related to MWS requests.
These features are disabled by default. To use these features, set flag _use_feature_mwsresponse to True
on an API class instance before making any requests:

api_class = Orders(...)
api_class._use_feature_mwsresponse = True

If the flag is False, all requests will return either DictWrapper or DataWrapper objects (deprecated);
and parsed XML contents will be returned as an instance of ObjectDict (deprecated).

New features using MWSResponse and DotDict will become the default in v1.0.

Warning

The following includes features added in v1.0dev16 related to Datatype models.
Models can be called from the API class that uses them. For example, to use the
Address model attached to the
InboundShipments API:

from mws import InboundShipments

from the class itself:
my_address = InboundShipments.Address(...)

or from an instance of the class:
inbound_shipments_api = InboundShipments(...)
my_address = inbound_shipments_api.Address(...)

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 python-amazon-mws

 		
 CHANGELOG

 		
 v1.0dev16

 		
 Major changes

 		
 Minor changes

 		
 v1.0dev15

 		
 Major changes

 		
 Code restructuring

 		
 Deprecations

 		
 Minor changes

 		
 Prerequisites for MWS connectivity

 		
 Test MWS access using Scratchpad

 		
 Installation

 		
 Getting started

 		
 Entering credentials

 		
 Making requests

 		
 Generic Requests

 		
 Back to basics

 		
 Parameter dict flattening

 		
 Generic request component methods

 		
 Managing Fulfillment Inbound (FBA) Shipments

 		
 Basic steps to create a shipment in MWS

 		
 Requesting a shipment plan

 		
 Create the API instance

 		
 Create your ship-from address

 		
 Request a shipment plan

 		
 Processing shipment plans

 		
 Gathering shipment details

 		
 Converting plan items to shipment items

 		
 Creating shipments

 		
 Updating shipments

 		
 Changing item quantities

 		
 Adding items from a new shipment plan

 		
 Using Parsed XML Responses

 		
 How XML responses are parsed in python-amazon-mws

 		
 Result keys and metadata

 		
 XML “cleaning” before parsing

 		
 Feeds

 		
 Uploading metadata for VAT invoices

 		
 Feeds API reference

 		
 InboundShipments

 		
 InboundShipments API reference

 		
 Other tools

 		
 Data models

 		
 Enums

 		
 Utilities

 		
 Products

 		
 Using examples on this page

 		
 Products API reference

 		
 Data models

 		
 Enums

 		
 Reports

 		
 Reports API reference

 		
 Enums

 		
 DotDict

 		
 Keys as attributes

 		
 Native iteration

 		
 Recursive conversion of dict objects

 		
 Working with XML tag attributes

 		
 DotDict API

 		
 MWSResponse

 		
 Parsed content for XML responses

 		
 Original response access

 		
 MWSResponse API

